- home
- Search
- Energy Research
- UK Research and Innovation
- 7. Clean energy
- 13. Climate action
- 14. Life underwater
- Energy Research
- UK Research and Innovation
- 7. Clean energy
- 13. Climate action
- 14. Life underwater
Research data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: John W. Williams, Karyn Tabor;This dataset contains two metrics for climate change exposure using downscaled climate projections with the SRES A2 emissions scenario (Tabor and Williams, 2007).The metrics represent dissimilarity measurements of the squared Euclidean distance between seasonal (June–August and December–February) temperature and precipitation variables in the 20th century climate and mid-21st century climate. (1) disappearing climate risk - measure of dissimilarity between a pixel’s late 20th century climate and its closest matching pixel in the global set of 21st-century climates (2) novel climate risk - measure of dissimilarity between a pixel’s future climate and its closest matching pixel in the global set of late 20th-century climates. The data are in arcASCII format. All data are in units of standard Euclidean distance and multiplied by 1000. This is the original data. To scale the data similar to Tabor et al. (2018), remove outliers above the 99th percentile distribution before rescaling from 0-1. Unprojected number of columns 2160 number of rows 857 Lower Left X Center -179.917 Lower Left Y Center -59.084 Cell size 0.166667 decimal degrees (10 minutes or ~17 km) {"references": ["Tabor, K. et al. (2018). Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation: https://doi.org/10.3390/land7030090", "Tabor and Williams (2010). Globally downscaled climate projections for assessing the conservation impacts of climate change. https://doi.org/10.1890/09-0173.1", "Williams, J.W. et al. (2007). Projected distributions of novel and disappearing climates by 20100 AD. https://doi.org/10.1073/pnas.0606292104"]} Support for this project was provided by Conservation International, the Land Tenure Center at the University of Wisconsin, the Center for Climatic Research at the University of Wisconsin, and the Environment Program at the University of Wisconsin–Madison. This research has been funded in part by the Walton Family Foundation, the Gordon and Betty Moore Foundation, and a gift from Betty and Gordon Moore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1559298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 105visibility views 105 download downloads 30 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1559298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:UKRI | Pollutants in the Urban E...UKRI| Pollutants in the Urban Environment: An Integrated Framework for Improving Sustainability of the Indoor Environment (PUrE Intrawise)Authors: Benjamin Greening; Tim Braunholtz-Speight; Ruth Wood; Muir Freer;With the 2015 Paris Agreement pursuing efforts to limit global temperature increase to below 2°C above pre-industrial levels and the “energy trilemma” goals of energy security, energy equity and environmental sustainability, decarbonisation remains a priority across all of the United Kingdom (United Kingdom) energy system, not just electricity. Electricity and thermal energy storage technologies can offer a host of benefits across the energy value chain through the abilityS to capture, store and then release electricity or thermal energy over a period of time. These benefits include helping capture the full potential of renewable generation and providing services such as frequency response and reserve to Great Britain’s (GB) electricity system. In addition, with the aforementioned climate targets in mind, energy storage can also play a role in facilitating the decarbonisation of other activities and sectors. Here we delve deeper into how energy storage technologies can contribute to both energy sector transformation and more broadly, decarbonisation. Furthermore, we discuss the importance of ensuring a technology-agnostic approach to the development of policy and regulation with relevance to energy storage. This ensures that storage technologies with significant potential to contribute to the ‘energy trilemma’ goals are not precluded from entering the market due to unfavourable policy and regulatory frameworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi ArabiaPublisher:Wiley Funded by:UKRI | Control of spin and coher...UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structuresSergei Lopatin; Iain McCulloch; Iain McCulloch; Rawad K. Hallani; Hu Chen; Daniel Bryant; Lewis Cater; Marios Neophytou; Wan Yue; Wan Yue;AbstractThis work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2‐b][1]benzothiophene isoindigo (TBTI)‐containing low bandgap donor–acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron‐rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high‐resolution electron energy loss spectroscopy is used to investigate the phase‐separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | CO2 injection and storage...UKRI| CO2 injection and storage - Short and long-term behaviour at different spatial scalesAuthors: H. Vosper; R.A. Chadwick; G.A. Williams;Abstract The use of water production as a pressure mitigation tool in the context of CO2 storage is widely studied but the impact it might have on the migration behaviour of a buoyant CO2 plume is less well reported. To investigate this further two different scenarios were modelled. In the first, a single water production well was used to draw CO2 along the strike of an open aquifer with a regional dip. Large rates of water production (5–10 times the volume of injected CO2) were required to achieve only small displacements of the CO2 plume. The second scenario investigated to what extent an induced hydraulic gradient might spill CO2 already stored in a structural trap. Here the effects were more pronounced with over 90% of the CO2 being spilled at a water cycling rate of 10 Mt per year (corresponding to a hydraulic gradient of 1.28 bar/km). The modelling was tested by the real case at Sleipner where CO2 migration in the Utsira Sand is potentially impacted by water production at the nearby Volve field. Simulations concluded that the CO2 plume at Sleipner should not be materially affected by water production from Volve and this is supported by the time-lapse seismics.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 20 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | Solving the NIR dilemma f...UKRI| Solving the NIR dilemma for organic photovoltaicsJankus, Vygintas; Abdullah, Khalid; Griffiths, Gareth C.; Al-Attar, Hameed; Zheng, Yonghao; Bryce, Martin R.; Monkman, Andrew P.;Abstract Polymer light emitting diodes (PLEDs) may revolutionize lighting and display industries. PLEDs would enable printing of display or lighting panels on large area substrates that could substantially reduce fabrication costs by avoiding expensive vacuum processes presently used in OLED technologies. PVK is one of the most popular hosts for blue PLEDs. However, PVK has very poor electron transport properties and oxadiazole based electron dopants, e.g. PBD or OXD-7, are used to improve charge transport. This is generally ascribed to capture and transport of electrons on the PBD or OXD-7. Here we show that this is not necessarily the only reason for improved efficiency upon PVK doping. We demonstrate that devices with PVK doped with PBD or OXD-7 have emission lasting up to 1 ms which in some cases may be greater than prompt emission from excitons formed initially on the dopant. This long-lived emission is arising mainly due to formation of an exciplex between the PVK and PBD/OXD-7. This exciplex state then repopulates dopant iridium complexes over a long period of time giving very long-lived emission. We also note that this exciplex-fed long-lived emission from heavy metal complexes is observed in several PLEDs with PBD and PVK (and also OXD-7) doped with blue or green iridium phosphors indicating this to be a general phenomenon.
Organic Electronics arrow_drop_down Durham University: Durham Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.orgel.2015.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Organic Electronics arrow_drop_down Durham University: Durham Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.orgel.2015.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar...UKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS)Authors: Ma Z; Bao H; Roskilly AP;Abstract The phase change of sodium acetate (SA) aqueous solution to sodium acetate trihydrate (SAT) requires large supercooling degree, then the aqueous solution can be at liquid state at fairly low temperature without releasing the stored latent heat. Such a feature makes SAT a promising material for seasonal solar thermal energy storage. The present study firstly summarized the thermo-physical properties of the solid SAT and liquid SA aqueous solution at different temperatures and concentrations, including equilibrium temperatures, densities, specific heats and thermal conductivities. The calculation methods of these properties have been established. Secondly, with the aid of the above properties, a mathematic model of the thermal discharge process of the storage system, i.e. the solidification process of supercooled SA aqueous solution, was built based on the heat transfer between the phase changing material within a single storage tube and the external flowing heat transfer fluid (HTF). The experimentally obtained SAT crystal growth rate and the enthalpy change of solidifying supercooled SA aqueous solution were employed to aid the modelling. The discharge temperature and thermal power of the storage system were numerically obtained and analysed. The influence of the ambient temperature, the mass flow rate as well as the heat transfer coefficient of the HTF on the thermal discharge performance were discussed. Finally, the seasonal thermal storage density of SAT was given and compared to that of water and some sorption materials.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Designer Catalysts for Hi..., UKRI | Designer Catalysts for Hi...UKRI| Designer Catalysts for High Efficiency Biodiesel Production ,UKRI| Designer Catalysts for High Efficiency Biodiesel ProductionAuthors: Martinez Hernandez, E; SADHUKHAN, J; Campbell, GM; Martinez-Herrera, J;Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Multi Vector Energy Distr...UKRI| Multi Vector Energy Distribution System Modelling and Optimisation with Integrated Demand Side ResponseAuthors: Furong Li; Chenghong Gu; Wenjiang Yang; Yonghua Song;The decarbonization of transport and heating will introduce uncertain smart appliance growth in the power system, which fundamentally challenges traditional network pricing. In this paper, a new long-term distribution network charging is proposed to accommodate uncertain load growth. Instead of using fixed a load growth rate (LGR), it adopts a fuzzy model, developed based on a set of projected deterministic LGRs and confidence levels. This fuzzy model is incorporated into the pricing model through $ {\alpha } $ -cut intervals. In order to improve computational efficiency, an analytical pricing approach is introduced. The vertex extension approach is used to build charge membership functions. Thereafter, a common defuzzification approach, center of gravity, is employed to defuzzify membership functions in order to generate deterministic charges. The new approach is benchmarked with two existing standard charging methods on a practical U.K. high-voltage distribution system. Results show that it is effective in capturing the uncertainty in load growth.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2518175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2518175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: John W. Williams, Karyn Tabor;This dataset contains two metrics for climate change exposure using downscaled climate projections with the SRES A2 emissions scenario (Tabor and Williams, 2007).The metrics represent dissimilarity measurements of the squared Euclidean distance between seasonal (June–August and December–February) temperature and precipitation variables in the 20th century climate and mid-21st century climate. (1) disappearing climate risk - measure of dissimilarity between a pixel’s late 20th century climate and its closest matching pixel in the global set of 21st-century climates (2) novel climate risk - measure of dissimilarity between a pixel’s future climate and its closest matching pixel in the global set of late 20th-century climates. The data are in arcASCII format. All data are in units of standard Euclidean distance and multiplied by 1000. This is the original data. To scale the data similar to Tabor et al. (2018), remove outliers above the 99th percentile distribution before rescaling from 0-1. Unprojected number of columns 2160 number of rows 857 Lower Left X Center -179.917 Lower Left Y Center -59.084 Cell size 0.166667 decimal degrees (10 minutes or ~17 km) {"references": ["Tabor, K. et al. (2018). Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation: https://doi.org/10.3390/land7030090", "Tabor and Williams (2010). Globally downscaled climate projections for assessing the conservation impacts of climate change. https://doi.org/10.1890/09-0173.1", "Williams, J.W. et al. (2007). Projected distributions of novel and disappearing climates by 20100 AD. https://doi.org/10.1073/pnas.0606292104"]} Support for this project was provided by Conservation International, the Land Tenure Center at the University of Wisconsin, the Center for Climatic Research at the University of Wisconsin, and the Environment Program at the University of Wisconsin–Madison. This research has been funded in part by the Walton Family Foundation, the Gordon and Betty Moore Foundation, and a gift from Betty and Gordon Moore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1559298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 105visibility views 105 download downloads 30 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1559298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:UKRI | Pollutants in the Urban E...UKRI| Pollutants in the Urban Environment: An Integrated Framework for Improving Sustainability of the Indoor Environment (PUrE Intrawise)Authors: Benjamin Greening; Tim Braunholtz-Speight; Ruth Wood; Muir Freer;With the 2015 Paris Agreement pursuing efforts to limit global temperature increase to below 2°C above pre-industrial levels and the “energy trilemma” goals of energy security, energy equity and environmental sustainability, decarbonisation remains a priority across all of the United Kingdom (United Kingdom) energy system, not just electricity. Electricity and thermal energy storage technologies can offer a host of benefits across the energy value chain through the abilityS to capture, store and then release electricity or thermal energy over a period of time. These benefits include helping capture the full potential of renewable generation and providing services such as frequency response and reserve to Great Britain’s (GB) electricity system. In addition, with the aforementioned climate targets in mind, energy storage can also play a role in facilitating the decarbonisation of other activities and sectors. Here we delve deeper into how energy storage technologies can contribute to both energy sector transformation and more broadly, decarbonisation. Furthermore, we discuss the importance of ensuring a technology-agnostic approach to the development of policy and regulation with relevance to energy storage. This ensures that storage technologies with significant potential to contribute to the ‘energy trilemma’ goals are not precluded from entering the market due to unfavourable policy and regulatory frameworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi ArabiaPublisher:Wiley Funded by:UKRI | Control of spin and coher...UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structuresSergei Lopatin; Iain McCulloch; Iain McCulloch; Rawad K. Hallani; Hu Chen; Daniel Bryant; Lewis Cater; Marios Neophytou; Wan Yue; Wan Yue;AbstractThis work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2‐b][1]benzothiophene isoindigo (TBTI)‐containing low bandgap donor–acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron‐rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high‐resolution electron energy loss spectroscopy is used to investigate the phase‐separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | CO2 injection and storage...UKRI| CO2 injection and storage - Short and long-term behaviour at different spatial scalesAuthors: H. Vosper; R.A. Chadwick; G.A. Williams;Abstract The use of water production as a pressure mitigation tool in the context of CO2 storage is widely studied but the impact it might have on the migration behaviour of a buoyant CO2 plume is less well reported. To investigate this further two different scenarios were modelled. In the first, a single water production well was used to draw CO2 along the strike of an open aquifer with a regional dip. Large rates of water production (5–10 times the volume of injected CO2) were required to achieve only small displacements of the CO2 plume. The second scenario investigated to what extent an induced hydraulic gradient might spill CO2 already stored in a structural trap. Here the effects were more pronounced with over 90% of the CO2 being spilled at a water cycling rate of 10 Mt per year (corresponding to a hydraulic gradient of 1.28 bar/km). The modelling was tested by the real case at Sleipner where CO2 migration in the Utsira Sand is potentially impacted by water production at the nearby Volve field. Simulations concluded that the CO2 plume at Sleipner should not be materially affected by water production from Volve and this is supported by the time-lapse seismics.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 20 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | Solving the NIR dilemma f...UKRI| Solving the NIR dilemma for organic photovoltaicsJankus, Vygintas; Abdullah, Khalid; Griffiths, Gareth C.; Al-Attar, Hameed; Zheng, Yonghao; Bryce, Martin R.; Monkman, Andrew P.;Abstract Polymer light emitting diodes (PLEDs) may revolutionize lighting and display industries. PLEDs would enable printing of display or lighting panels on large area substrates that could substantially reduce fabrication costs by avoiding expensive vacuum processes presently used in OLED technologies. PVK is one of the most popular hosts for blue PLEDs. However, PVK has very poor electron transport properties and oxadiazole based electron dopants, e.g. PBD or OXD-7, are used to improve charge transport. This is generally ascribed to capture and transport of electrons on the PBD or OXD-7. Here we show that this is not necessarily the only reason for improved efficiency upon PVK doping. We demonstrate that devices with PVK doped with PBD or OXD-7 have emission lasting up to 1 ms which in some cases may be greater than prompt emission from excitons formed initially on the dopant. This long-lived emission is arising mainly due to formation of an exciplex between the PVK and PBD/OXD-7. This exciplex state then repopulates dopant iridium complexes over a long period of time giving very long-lived emission. We also note that this exciplex-fed long-lived emission from heavy metal complexes is observed in several PLEDs with PBD and PVK (and also OXD-7) doped with blue or green iridium phosphors indicating this to be a general phenomenon.
Organic Electronics arrow_drop_down Durham University: Durham Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.orgel.2015.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Organic Electronics arrow_drop_down Durham University: Durham Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.orgel.2015.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar...UKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS)Authors: Ma Z; Bao H; Roskilly AP;Abstract The phase change of sodium acetate (SA) aqueous solution to sodium acetate trihydrate (SAT) requires large supercooling degree, then the aqueous solution can be at liquid state at fairly low temperature without releasing the stored latent heat. Such a feature makes SAT a promising material for seasonal solar thermal energy storage. The present study firstly summarized the thermo-physical properties of the solid SAT and liquid SA aqueous solution at different temperatures and concentrations, including equilibrium temperatures, densities, specific heats and thermal conductivities. The calculation methods of these properties have been established. Secondly, with the aid of the above properties, a mathematic model of the thermal discharge process of the storage system, i.e. the solidification process of supercooled SA aqueous solution, was built based on the heat transfer between the phase changing material within a single storage tube and the external flowing heat transfer fluid (HTF). The experimentally obtained SAT crystal growth rate and the enthalpy change of solidifying supercooled SA aqueous solution were employed to aid the modelling. The discharge temperature and thermal power of the storage system were numerically obtained and analysed. The influence of the ambient temperature, the mass flow rate as well as the heat transfer coefficient of the HTF on the thermal discharge performance were discussed. Finally, the seasonal thermal storage density of SAT was given and compared to that of water and some sorption materials.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Designer Catalysts for Hi..., UKRI | Designer Catalysts for Hi...UKRI| Designer Catalysts for High Efficiency Biodiesel Production ,UKRI| Designer Catalysts for High Efficiency Biodiesel ProductionAuthors: Martinez Hernandez, E; SADHUKHAN, J; Campbell, GM; Martinez-Herrera, J;Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2014 . Peer-reviewedData sources: Oxford University Research ArchiveUniversity of Surrey, Guildford: Surrey Scholarship Online.Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-013-0105-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Multi Vector Energy Distr...UKRI| Multi Vector Energy Distribution System Modelling and Optimisation with Integrated Demand Side ResponseAuthors: Furong Li; Chenghong Gu; Wenjiang Yang; Yonghua Song;The decarbonization of transport and heating will introduce uncertain smart appliance growth in the power system, which fundamentally challenges traditional network pricing. In this paper, a new long-term distribution network charging is proposed to accommodate uncertain load growth. Instead of using fixed a load growth rate (LGR), it adopts a fuzzy model, developed based on a set of projected deterministic LGRs and confidence levels. This fuzzy model is incorporated into the pricing model through $ {\alpha } $ -cut intervals. In order to improve computational efficiency, an analytical pricing approach is introduced. The vertex extension approach is used to build charge membership functions. Thereafter, a common defuzzification approach, center of gravity, is employed to defuzzify membership functions in order to generate deterministic charges. The new approach is benchmarked with two existing standard charging methods on a practical U.K. high-voltage distribution system. Results show that it is effective in capturing the uncertainty in load growth.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2518175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2016.2518175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu