- home
- Search
- Energy Research
- 7. Clean energy
- 2. Zero hunger
- 1. No poverty
- UNSW Sydney
- Energy Research
- 7. Clean energy
- 2. Zero hunger
- 1. No poverty
- UNSW Sydney
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes;Serina Ahlgren;
Pål Börjesson;Serina Ahlgren
Serina Ahlgren in OpenAIREAnnette L. Cowie;
Annette L. Cowie
Annette L. Cowie in OpenAIREdoi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors:Ali Dorri;
Ali Dorri
Ali Dorri in OpenAIREFengji Luo;
Fengji Luo
Fengji Luo in OpenAIRESamuel Karumba;
Samuel Karumba
Samuel Karumba in OpenAIRESalil Kanhere;
+2 AuthorsSalil Kanhere
Salil Kanhere in OpenAIREAli Dorri;
Ali Dorri
Ali Dorri in OpenAIREFengji Luo;
Fengji Luo
Fengji Luo in OpenAIRESamuel Karumba;
Samuel Karumba
Samuel Karumba in OpenAIRESalil Kanhere;
Salil Kanhere
Salil Kanhere in OpenAIRERaja Jurdak;
Raja Jurdak
Raja Jurdak in OpenAIREZhao Yang Dong;
Zhao Yang Dong
Zhao Yang Dong in OpenAIREAbstract Recently, blockchain adoption in prosumer-side energy trading has been actively studied. However, most of the conventional frameworks permanently store all transactions which increases blockchain management cost and reduces the user privacy. Additionally, most of the existing solutions focus on facilitating energy trading and negotiation, while ignoring two critical issues: data acquisition and contract execution. The former refers to the process of collecting power generation/consumption information from on-site energy resources which is required to scale. The latter refers to the process of adjusting controllable loads’ operation in real-time. In this paper, we propose a removable blockchain architecture that introduces a Temporary Chain (TC) where transactions can be stored for a particular period of time. The architecture enables an energy manager node to effectively collect data for facilitating real-time load control. TC reduces the volume of transactions stored in blockchain which increases scalability, throughput, and privacy of the users and reduces latency. We present two approaches to implement TC which are: i) blackboard where a central authority stores temporary transactions, and ii) removable ledger. We introduce a lightweight mode to transfer data. The implementation results show that the proposed framework reduces blockchain storage size and delay and increases throughput.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Network and Computer ApplicationsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnca.2021.103018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Network and Computer ApplicationsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnca.2021.103018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Huan Zhao;
Huan Zhao
Huan Zhao in OpenAIREJunhua Zhao;
Junhua Zhao
Junhua Zhao in OpenAIREJing Qiu;
Gaoqi Liang; +3 AuthorsJing Qiu
Jing Qiu in OpenAIREHuan Zhao;
Huan Zhao
Huan Zhao in OpenAIREJunhua Zhao;
Junhua Zhao
Junhua Zhao in OpenAIREJing Qiu;
Gaoqi Liang;Jing Qiu
Jing Qiu in OpenAIREFushuan Wen;
Fushuan Wen
Fushuan Wen in OpenAIREYusheng Xue;
Yusheng Xue
Yusheng Xue in OpenAIREZhao Yang Dong;
Zhao Yang Dong
Zhao Yang Dong in OpenAIRERisk preference is an important factor in electricity market strategy analysis and decision-making. The existing methods of risk preference analysis need to design and execute questionnaires or experiments on the subjects, and hence are costly and time-consuming for bidding in electricity markets. This article proposes a new method of data-driven risk preference analysis for power generation plants based on historical data and inverse reinforcement learning. Historical data are transformed to the transition function model according to the specific market mechanism. An adjusted inverse reinforcement learning model is thereafter proposed along with the optimization objective and technical constraints. The proposed method is tested in a simulated electricity market environment using the Australian Energy Market Operator (AEMO) day-ahead bidding data. Simulation results show that 1) thermal power plants prefer to adjust risk preferences within the day; 2) apart from the thermal power plants, the rest types of power plants are risk-neutral; 3) the daily risk preference trend of the thermal power plants varies in different seasons and is closely related to the load level.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3036525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3036525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989Publisher:Elsevier BV Authors: R.D.L. Kristensen; S.N. Sahu; D. Haneman;CuInSe2 thin films were cathodically electrodeposited on conducting substrates from aqueous solutions containing CuCl, InCl3 and SeO2. Structural characterization were carried out by microprobe, X-ray diffraction and electron microscopy studies. The presence of chalcopyrite phase CuInSe2 was confirmed from X-ray studies. Optical absorption studies indicated band gap values of about 1.1 eV. Electrical characterization was carried out by Hall effect and resistivity studies. The room temperature resistivity and mobility were found to be 2.15×10−3 ω cm and 8.1 cm2 V−1s−1 respectively for p-type films. Diffusion of In into p-type films converted them to n-type. Photovoltaic and photoelectrochemical solar cells were fabricated with Mo/p-CuInSe2/CdS/Au and Mo/n-CuInSe2/I1−I3−/C configurations. The open circuit photovoltage and short circuit current densities were 188 mV and 0.056 mA cm−2 for photovoltaic cells and 172 mV and 2.75 mA cm−2 for photoelectrochemical cells under 100 mW cm−2 intensity of illumination, without optimisation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0165-1633(89)90063-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0165-1633(89)90063-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Martin A. Green;Abstract Of the materials of current research interest in thin-film photovoltaics, Ru and Te are amongst the nine rarest elements in the earth's crust, with In and Se in positions 11 and 14, raising the issue as to what constraints, if any, are placed on future thin-film photovoltaic manufacturing volumes by such scarcity. Te provides an interesting case study since more than 600 t has been incorporated into CdTe modules fielded to-date, with CdTe technology recently consolidating its position as the most successful commercial thin-film technology. The origin and impacts of recent fluctuating Te market conditions are discussed as are new insights into long-term supply from Cu refining.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2001Publisher:IEEE Comput. Soc Authors: Timothy D. Mount; Timothy D. Mount;The restructured market for electricity in the UK has experienced a systematic pattern of price spikes associated with the use of market power by the two dominant generators. Partly in response to this problem, the share of capacity owned by any individual generator after restructuring was limited in Victoria, Australia. As a result, a much more competitive market resulted with prices substantially lower than they were under regulation. Nevertheless, an erratic pattern of price spikes exists and the price volatility is a potential problem for customers. This paper argues that the use of a uniform price auction for electricity markets exacerbates price volatility. A discriminatory price auction is proposed as a better alternative that would reduce the responsiveness of price to errors in forecasting total load.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/hicss.1999.772841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/hicss.1999.772841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, MalaysiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Rahman, Tasmiat;
Nawabjan, Amirjan;Rahman, Tasmiat
Rahman, Tasmiat in OpenAIRETarazona, Antulio;
Tarazona, Antulio
Tarazona, Antulio in OpenAIREBagnall, Darren M.;
+1 AuthorsBagnall, Darren M.
Bagnall, Darren M. in OpenAIRERahman, Tasmiat;
Nawabjan, Amirjan;Rahman, Tasmiat
Rahman, Tasmiat in OpenAIRETarazona, Antulio;
Tarazona, Antulio
Tarazona, Antulio in OpenAIREBagnall, Darren M.;
Bagnall, Darren M.
Bagnall, Darren M. in OpenAIREBoden, Stuart;
Boden, Stuart
Boden, Stuart in OpenAIREIn this paper, we present morphological and electrical characteristics of a junction formed of Si p-type films deposited on an n-type silicon wafer using a hot wire chemical vapor deposition (HWCVD) tool. We describe the fabrication process and study the influence of diborane flow and postprocess annealing in improving junction characteristics. Our morphological studies undertaken using atomic force microscopy show that the initial deposition suffered from voids rather than being a uniform film; however, this improves significantly under our annealing treatment. The improvement in morphology was observed in the electrical characteristics, with estimated $V_{\text{oc}}$ doubling and rectification of the junction improving by several orders of magnitude. Fitting of the current–voltage curves to a two-diode model showed that increasing the diborane flow in the process helps reduce the saturation current and ideality factors, while increasing the shunt resistance. Electrochemical capacitance–voltage (ECV) and quasi-steady-state photoconductance measurements are used to characterize the deposited films further. A solar cell device with a silicon epitaxy emitter is modeled using industry-standard 3-D modeling tools and input parameters from experimental data, and the impact of defects is studied. A potential efficiency approaching 25% is shown to be feasible for an optimized device.
e-Prints Soton arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2598277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2598277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Martin A. Green;
Ewan D. Dunlop; Jochen Hohl‐Ebinger; Masahiro Yoshita; +5 AuthorsMartin A. Green
Martin A. Green in OpenAIREMartin A. Green;
Ewan D. Dunlop; Jochen Hohl‐Ebinger; Masahiro Yoshita; Nikos Kopidakis;Martin A. Green
Martin A. Green in OpenAIREKarsten Bothe;
David Hinken;Karsten Bothe
Karsten Bothe in OpenAIREMichael Rauer;
Xiaojing Hao;Michael Rauer
Michael Rauer in OpenAIREdoi: 10.1002/pip.3595
AbstractConsolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 516 citations 516 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Zheng, Cheng;handle: 1959.4/59620
Nearly 50% of global energy consumption is associated with meeting thermal requirements. Whilst some of this is heat goes to low temperature applications like hot water supply, there is also a huge demand for the supply of 100-250oC thermal energy for industrial and commercial applications which is currently met by gas and electricity. However, using innovative optical and thermal technologies, it can also (potentially) be met by concentrated sunlight from urban rooftop collectors, eliminating billions of kg of CO2 emissions per year. Hence, it may be possible to develop new, advanced collectors to substantially increase the amount of commercial rooftop solar energy harvesting. At present, though, there are still some barriers to overcome to successfully collect large scale of 100-250oC thermal energy from rooftops. One key barrier for most concentrated solar systems is that integration with rooftops is relatively complex and cumbersome in comparison with photovoltaic (PV) panels. This requires a new type of concentrator which is efficient, low-cost and has a low-wind/aesthetic profile. These criteria point to thin concentrators that can be rack-mounted or laid flat on the roof with minimal balance of system requirements. The system should have similar geometrical features and appearance to PV panels and non-concentrating solar hot water collection panels, which are by far the most widely deployed solar collection systems to date. Such a concentrating collector has yet to be demonstrated. As such, this study aims to advancing rooftop solar concentrating technology for commercial and industrial applications via the development of thin optical elements which avoid rotational tracking. During the course of the research, several innovative low-profile optical concentrators (<15cm in height) were designed, developed and systematically investigated to demonstrate their potential to deliver heat energy in the 100-250oC range. A series of experiments were conducted to validate these compact optical concentrator concepts and to demonstrate their performance as semi-passive, internal tracking and concentrating. An economic analysis was also performed to evaluate the feasibility of the final, optimized design proposed in this thesis. Overall, this study offers new optical platforms to advance the utilization of solar energy in urban areas.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Zi Ouyang; Yang Li; Jun Lv; Jun Lv; Zhimeng Wang; Xiaowei Shen; Guoqing Chen; Chen Cheng;Ning Song;
Chen Zhu; Alison Lennon; Pei-Chieh Hsiao; Canjun Shen;Ning Song
Ning Song in OpenAIREAbstract In this study, a new method to reduce the thermomechanical stress in silicon solar cells induced during the cell interconnection process is proposed. By repositioning the rear pads such that the silicon solar cells are bonded to the front copper conductors ended at the same locations as the outer edges of the outermost rear pads along the busbar direction. Finite element modelling predicts that stress reduction of >50% was achieved when solar cells are interconnected by conventional tabbing or Multi-busbars (MBB) and it was confirmed by the derived stress measured by the micro-Raman spectroscopy. Front busbars terminated with a reduced contact area can further increase the tolerance of any potential misalignment arising from process variations.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu