- home
- Search
- Energy Research
- 2021-2025
- 11. Sustainability
- 1. No poverty
- University of Oxford
- Energy Research
- 2021-2025
- 11. Sustainability
- 1. No poverty
- University of Oxford
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors:Neubauer, David;
Neubauer, David
Neubauer, David in OpenAIREFerrachat, Sylvaine;
Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsFerrachat, Sylvaine
Ferrachat, Sylvaine in OpenAIRENeubauer, David;
Neubauer, David
Neubauer, David in OpenAIREFerrachat, Sylvaine;
Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia;Ferrachat, Sylvaine
Ferrachat, Sylvaine in OpenAIRETegen, Ina;
Tegen, Ina
Tegen, Ina in OpenAIREWieners, Karl-Hermann;
Wieners, Karl-Hermann
Wieners, Karl-Hermann in OpenAIREMauritsen, Thorsten;
Stemmler, Irene; Barthel, Stefan; Bey, Isabelle;Mauritsen, Thorsten
Mauritsen, Thorsten in OpenAIREDaskalakis, Nikos;
Heinold, Bernd;Daskalakis, Nikos
Daskalakis, Nikos in OpenAIREKokkola, Harri;
Kokkola, Harri
Kokkola, Harri in OpenAIREPartridge, Daniel;
Rast, Sebastian; Schmidt, Hauke;Partridge, Daniel
Partridge, Daniel in OpenAIRESchutgens, Nick;
Stanelle, Tanja;Schutgens, Nick
Schutgens, Nick in OpenAIREStier, Philip;
Stier, Philip
Stier, Philip in OpenAIREWatson-Parris, Duncan;
Watson-Parris, Duncan
Watson-Parris, Duncan in OpenAIRELohmann, Ulrike;
Lohmann, Ulrike
Lohmann, Ulrike in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors:Neubauer, David;
Neubauer, David
Neubauer, David in OpenAIREFerrachat, Sylvaine;
Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsFerrachat, Sylvaine
Ferrachat, Sylvaine in OpenAIRENeubauer, David;
Neubauer, David
Neubauer, David in OpenAIREFerrachat, Sylvaine;
Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia;Ferrachat, Sylvaine
Ferrachat, Sylvaine in OpenAIRETegen, Ina;
Tegen, Ina
Tegen, Ina in OpenAIREWieners, Karl-Hermann;
Wieners, Karl-Hermann
Wieners, Karl-Hermann in OpenAIREMauritsen, Thorsten;
Stemmler, Irene; Barthel, Stefan; Bey, Isabelle;Mauritsen, Thorsten
Mauritsen, Thorsten in OpenAIREDaskalakis, Nikos;
Heinold, Bernd;Daskalakis, Nikos
Daskalakis, Nikos in OpenAIREKokkola, Harri;
Kokkola, Harri
Kokkola, Harri in OpenAIREPartridge, Daniel;
Rast, Sebastian; Schmidt, Hauke;Partridge, Daniel
Partridge, Daniel in OpenAIRESchutgens, Nick;
Stanelle, Tanja;Schutgens, Nick
Schutgens, Nick in OpenAIREStier, Philip;
Stier, Philip
Stier, Philip in OpenAIREWatson-Parris, Duncan;
Watson-Parris, Duncan
Watson-Parris, Duncan in OpenAIRELohmann, Ulrike;
Lohmann, Ulrike
Lohmann, Ulrike in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Jan 2023Publisher:Dryad Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; Leach, Nicholas; Smith, Christopher J.; Gill-Wiehl, Annelise; Landesman, Katherine;Bailis, Robert;
Bailis, Robert
Bailis, Robert in OpenAIRENearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/su14095244
Transit-Oriented Development (TOD) is advocated for achieving sustainable transportation through development around transit stations. TOD’s global implementation revealed varied outcomes, with many cities failing to achieve the intended objectives. TOD implementation in the Jakarta Metropolitan area still in its infancy. Through a geospatial information system and a survey of 400 commuters who live inside the 1 km radius of planned TOD, this longitudinal study aimed to examine an eight-year lapse between 2013 and 2020 of changes in two aspects, specifically land-use and spatial distribution as well as commuters’ travel behavior and preferences in TOD implementation and travel changes due to the COVID-19 pandemic. Key findings are as follows: increased diversity in the residential function around planned TOD areas in the Jakarta capital and a decrease in the suburbs, reflecting the commuters’ improved readiness to reside in planned TOD areas. Furthermore, kinship relations were the commuters’ main reason when selecting house locations, with no capacity to change their workplaces. A significant increase in public facilities at the expense of green open space (GOS) indicates that TOD implementation was conducted by the government with the sole authority to manage GOS, lacking private sector involvement. The cost factor was the most dominant reason for the commuter’s use of public transportation, instead of new transport modes such as MRT and LRT. Moreover, the commuter’s travel behavior in all studied transit stations, whilst it showed evidence of changes in time and frequency, was not greatly influenced by the COVID-19 related restrictions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Authors: Yaowei Cao; Youtang Zhang; Liu Yang;Rita Yi Man Li;
+1 AuthorsRita Yi Man Li
Rita Yi Man Li in OpenAIREYaowei Cao; Youtang Zhang; Liu Yang;Rita Yi Man Li;
Rita Yi Man Li
Rita Yi Man Li in OpenAIREM. James C. Crabbe;
M. James C. Crabbe
M. James C. Crabbe in OpenAIREdoi: 10.3390/su13073615
handle: 10547/624900
A major issue is whether the implementation of China’s green credit policy will affect the coordinated development of corporate sustainable operations and environmental protection. This paper used a propensity score matching—difference-in-differences (PSM-DID) model to analyse the impact of China’s green credit policy implemented in 2012 on the maturity mismatch risk between investment and financing in polluting and non-polluting companies. We found that: (1) green credit policies can help reduce the risk of maturity mismatch between investment and financing for polluting companies; (2) the reduction of short-term bank credit is the main way to curb the risk of maturity mismatch risk between investment and financing; (3) the green credit policy has no obvious mitigation effect on the risk of maturity mismatch between investment and financing among polluting companies with environmental protection investment; (4) the mitigation effect of the green credit policy on the maturity mismatch risk is more significant in state-owned polluting companies and polluting companies in areas with a lower level of financial development. The empirical results show that China’s green credit policy helps stimulate the environmental protection behaviour of companies, as well as helping alleviate the capital chain risk caused by the maturity mismatch between investment and financing. In addition, despite the effect of heterogeneity, it can solve the contradiction between environmental protection and economic development.
University of Bedfor... arrow_drop_down University of Bedfordshire RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2071-1050/13/7/3615Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Bedfor... arrow_drop_down University of Bedfordshire RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2071-1050/13/7/3615Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | UK Centre for Research on...UKRI| UK Centre for Research on Energy DemandAuthors:Francesco Fuso Nerini;
Tina Fawcett;Francesco Fuso Nerini
Francesco Fuso Nerini in OpenAIREYael Parag;
Paul Ekins;Yael Parag
Yael Parag in OpenAIREHere we discuss how personal carbon allowances (PCAs) could play a role in achieving ambitious climate mitigation targets. We argue that recent advances in AI for sustainable development, together with the need for a low-carbon recovery from the COVID-19 crisis, open a new window of opportunity for PCAs. Furthermore, we present design principles based on the Sustainable Development Goals for the future adoption of PCAs. We conclude that PCAs could be trialled in selected climate-conscious technologically advanced countries, mindful of potential issues around integration into the current policy mix, privacy concerns and distributional impacts. Personal carbon allowances (PCAs) could support climate mitigation efforts but would need to be carefully designed to avoid impacts on Sustainable Development Goals (SDGs). This Perspective discusses why the time is ripe for reconsidering PCAs and provides a set of SDG-based design principles for the future adoption of PCAs.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00756-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00756-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:IOP Publishing Authors:Pia Andres;
Pia Andres
Pia Andres in OpenAIREPenny Mealy;
Nils Handler;Penny Mealy
Penny Mealy in OpenAIRESamuel Fankhauser;
Samuel Fankhauser
Samuel Fankhauser in OpenAIREAbstract The transition away from a fossil-fuel powered economy towards a cleaner production system will create winners and losers in the global trade system. We compile a list of ‘brown’ traded products whose use is highly likely to decline if the world is to mitigate climate change, and explore which countries are most at risk of seeing their productive capabilities ‘stranded’. Using methods from economic geography and complexity, we develop novel measures of transition risk that capture the extent to which countries’ export profiles are locked-in to brown products. We show that countries exporting a high number of brown products, especially technologically sophisticated ones, could find it relatively easy to transition. Conversely, countries with exports highly concentrated in a few, low-complexity brown products have much fewer nearby diversification opportunities. Our results suggest that export complexity and diversity play a key role in determining transition risk. Path-breaking diversification strategies are needed to prevent nations from becoming stranded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acc347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 70visibility views 70 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acc347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | Human Adaptation to Coast...UKRI| Human Adaptation to Coastal Evolution: Late Quaternary evidence from Southeast Asia (SUNDASIA)Authors:Ryan Rabett;
Risa Morimoto;Ryan Rabett
Ryan Rabett in OpenAIREThorsten Kahlert;
Thorsten Kahlert
Thorsten Kahlert in OpenAIREChristopher Stimpson;
+7 AuthorsChristopher Stimpson
Christopher Stimpson in OpenAIRERyan Rabett;
Risa Morimoto;Ryan Rabett
Ryan Rabett in OpenAIREThorsten Kahlert;
Thorsten Kahlert
Thorsten Kahlert in OpenAIREChristopher Stimpson;
Christopher Stimpson
Christopher Stimpson in OpenAIREShawn O'Donnell;
Shawn O'Donnell
Shawn O'Donnell in OpenAIRENguyễn Thị Mai Hương;
Bui Van Manh;Nguyễn Thị Mai Hương
Nguyễn Thị Mai Hương in OpenAIRERachael Holmes;
Phạm Sinh Khánh; Tran Tan Van;Rachael Holmes
Rachael Holmes in OpenAIREFiona Coward;
Fiona Coward
Fiona Coward in OpenAIREpmid: 36753481
pmc: PMC9907861
Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia’s most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta’s southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5–8.5 and SSP2–4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground.
PLoS ONE arrow_drop_down Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0280126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PLoS ONE arrow_drop_down Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0280126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Authors:Rita Yi Man Li;
Yi Lut Li;Rita Yi Man Li
Rita Yi Man Li in OpenAIREM. James C. Crabbe;
M. James C. Crabbe
M. James C. Crabbe in OpenAIREOtilia Manta;
+1 AuthorsOtilia Manta
Otilia Manta in OpenAIRERita Yi Man Li;
Yi Lut Li;Rita Yi Man Li
Rita Yi Man Li in OpenAIREM. James C. Crabbe;
M. James C. Crabbe
M. James C. Crabbe in OpenAIREOtilia Manta;
Otilia Manta
Otilia Manta in OpenAIREMuhammad Shoaib;
Muhammad Shoaib
Muhammad Shoaib in OpenAIREdoi: 10.3390/su13115882
handle: 10547/624990
We argue that environmental legislation and regulation of more developed countries reflects significantly their moral values, but in less developed countries it differs significantly from their moral values. We examined this topic by using the keywords “sustainability” and “sustainable development”, studying web pages and articles published between 1974 to 2018 in Web of Science, Scopus and Google. Australia, Zimbabwe, and Uganda were ranked as the top three countries in the number of Google searches for sustainability. The top five cities that appeared in sustainability searches through Google are all from Africa. In terms of academic publications, China, India, and Brazil record among the largest numbers of sustainability and sustainable development articles in Scopus. Six out of the ten top productive institutions publishing sustainable development articles indexed in Scopus were located in developing countries, indicating that developing countries are well aware of the issues surrounding sustainable development. Our results show that when environmental law reflects moral values for betterment, legal adoption is more likely to be successful, which usually happens in well-developed regions. In less-developed states, environmental law differs significantly from moral values, such that changes in moral values are necessary for successful legal implementation. Our study has important implications for the development of policies and cultures, together with the enforcement of environmental laws and regulations in all countries.
University of Bedfor... arrow_drop_down University of Bedfordshire RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2071-1050/13/11/5882Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Bedfor... arrow_drop_down University of Bedfordshire RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2071-1050/13/11/5882Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023Publisher:SAE International Authors: Varun Shankar; Ime Usen; Nick Molden;Christopher Willman;
+1 AuthorsChristopher Willman
Christopher Willman in OpenAIREVarun Shankar; Ime Usen; Nick Molden;Christopher Willman;
Felix Leach;Christopher Willman
Christopher Willman in OpenAIREdoi: 10.4271/2023-01-1662
<div class="section abstract"><div class="htmlview paragraph">Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known.</div><div class="htmlview paragraph">To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO<sub>2</sub>, NO, and NO<sub>2</sub> were measured through a Portable Emissions Measuring System (PEMS). In addition, N<sub>2</sub>O, formaldehyde, acetaldehyde, volatile organic compounds (VOCs), and other gaseous and particulate tailpipe emissions were measured and categorized in cold-start, urban, rural, and motorway segments with a proprietary system developed by Emissions Analytics. Engine-out emissions were also measured from a single-cylinder engine at steady-state low speed and load conditions.</div><div class="htmlview paragraph">The results show that the aldehydes, VOCs, and N<sub>2</sub>O emissions were greatest at cold-start and lowest at motorway conditions. The formaldehyde real-driving emissions increased by 14 % on average between the E0 and E10 fuels. However, the formaldehyde engine-out emissions were reduced for E10. Acetaldehyde real-driving emissions were below the detectable threshold for both E0 and E10 fuels, whereas, engine-out emissions increased for the E10. Whilst CO emissions presented inconsistent results across the cars and driving conditions, a reduction in CO<sub>2</sub> emissions with the E10 fuel was observed across all conditions. NOx emissions increased for E10 compared to the E0 fuel in urban conditions and the opposite was observed for the motorway conditions. These findings highlight the need for the co-development of emissions regulations as greater ethanol and other renewable fuel content is blended into gasoline.</div></div>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2023-01-1662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2023-01-1662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu