search
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • Closed Access
  • Universidade Católica Portuguesa

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: René Bohnsack; René Bohnsack; Moritz Loock; Thorsten Helms;

    Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jose Guedes; Pedro A. Santos;

    Abstract To be useful to project managers, real option analysis (ROA) needs to capture the unique characteristics of individual projects and, at the same time, remain tractable and intuitive. That is a challenge since actual projects are often complex, featuring multiple sources of uncertainty as well as multiple investment and operating options. To meet the challenge, ROA has to take a clinical approach to project management and valuation, tailoring its framework to the specifics of each individual project to reflect its main sources of flexibility without becoming overly complex. This paper undertakes a ROA of an offshore oil development project of an integrated oil and gas company. The sequence and interconnections of available real options – exploration options, appraisal options, scaling options and abandonment options – as well as the calibration of the model's parameters, are developed in close collaboration with the Exploration and Production (E&P) division of the company, to assure realism and adherence to what management believes are the key sources of investment flexibility in a typical offshore project. The project assumes that there is joint uncertainty about reserve size and the price of oil. While the first source of uncertainty is resolved through exploration and appraisal activities the second is resolved through a diffusion model. The available real options add a substantial value to the project, with the option to abandon being the most valuable.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Joana Pinho;
    Joana Pinho
    ORCID
    Harvested from ORCID Public Data File

    Joana Pinho in OpenAIRE
    orcid Joana Resende;
    Joana Resende
    ORCID
    Harvested from ORCID Public Data File

    Joana Resende in OpenAIRE
    orcid Isabel Soares;
    Isabel Soares
    ORCID
    Harvested from ORCID Public Data File

    Isabel Soares in OpenAIRE

    Abstract In the last decades, the weight of renewable energies sources (RES-E) in the electricity generation mix of most European countries has considerably increased, constituting an important contribution to the transition towards a low-carbon economy. Until very recently, RES-E were supported by favorable investment mechanisms specially designed to endorse investment in RES-E. More recently, as RES-E are becoming increasingly more competitive (especially wind and solar photovoltaic), RES-E are starting to be remunerated according to market mechanisms. This has generated a lively debate on the economic pros and cons of dispatching RES-E in the market. This paper contributes to this debate by developing a game theoretical model in the context of which we analyze how the inclusion of RES-E in the electricity wholesale market affects equilibrium outcomes under demand and supply uncertainty. Then, we examine how the inclusion of RES-E in the electricity wholesale market impacts firms' incentives to invest in conventional energy sources, characterizing the optimal investment under demand and supply uncertainty. We find that, when RES-E capacity and asymmetry in firms' marginal production costs are sufficiently high, RES-E producers may strategically reduce the market price, in order to evict the less efficient conventional source in that period. Although, in the short-run, this strategy may actually favor energy consumers (since prices are lower), the expectations of inactivity periods (regardless of whether they arise for strategic or market reasons) may negatively affect investment in back-up capacity, possibly leading to an increase in future prices (since less back-up capacity is available). Finally, we provide an analytical characterization of optimal investment levels in conventional energy sources under demand and supply uncertainty.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Stéphane Bouché;
    Stéphane Bouché
    ORCID
    Harvested from ORCID Public Data File

    Stéphane Bouché in OpenAIRE
    Carlos de Miguel;

    Abstract In this paper, we analyze the implications of assuming that the intensity of aspirations is endogenous. In accordance with empirical evidence, consumption aspirations decrease with capital accumulation while environmental ones increase. We show that such a change in the intensity of aspirations gives rise to a U-shaped relationship between capital accumulation and environmental quality. We also study the implications of our assumption concerning the optimal allocation and show that the steady-state capital stock can be larger or smaller than the one corresponding to the modified golden rule. In addition, for realistic parameter values, the decentralization of the optimal allocation requires the implementation of a maintenance investment subsidy and a lump-sum transfer from the old to the young generation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Teresa Bonifácio-Lopes; orcid Luís M. G. Castro;
    Luís M. G. Castro
    ORCID
    Harvested from ORCID Public Data File

    Luís M. G. Castro in OpenAIRE
    orcid Ana Vilas-Boas;
    Ana Vilas-Boas
    ORCID
    Harvested from ORCID Public Data File

    Ana Vilas-Boas in OpenAIRE
    orcid Débora Campos;
    Débora Campos
    ORCID
    Harvested from ORCID Public Data File

    Débora Campos in OpenAIRE
    +2 Authors

    Brewer's spent grain (BSG) is a by-product of the beer industry and a potential source of bioactive compounds. In this study, two methods of extracting bioactive compounds from brewer's spent grain were used - solid-to-liquid conventional extraction (SLE) and solid-to-liquid ohmic heating extraction (OHE) coupled with two ratio combinations of solvents: 60 % and 80 % ethanol:water (v/v). The bioactive potential of the BSG extracts was assessed during the gastrointestinal tract digestion (GID) and the differences in their antioxidant activity, total phenolic content and characterization of the polyphenol profile was measured. The SLE extraction using 60 % ethanol:water (v/v) was the extraction method with higher antioxidant activity (33.88 mg ascorbic acid/g BSG - initial; 16.61 mg ascorbic acid/g BSG - mouth; 15.58 mg ascorbic acid/g BSG - stomach; 17.26 mg ascorbic acid/g BSG - duodenum) and higher content in total phenolics (13.26 mg gallic acid/g BSG - initial; 4.80 mg gallic acid/g BSG - mouth; 4.88 mg gallic acid/g BSG - stomach; 5.00 mg gallic acid/g BSG - duodenum). However, the OHE extraction using 80 % ethanol:water (v/v), had a higher bioaccessibility index (99.77 % for ferulic acid, 72.68 % for 4-hydroxybenzoic acid, 65.37 % for vanillin, 28.99 % for p-coumaric, 22.54 % for catechin) values of polyphenols. All the extracts enhanced (except for SLE for 60 % ethanol:water (v/v) at 2 and 1.5 %, and for 80 % ethanol:water (v/v) at 2 % with Bifidobacterium animalis spp. lactis BB12, where no growth was observed) the growth of the probiotic microorganisms tested (Bifidobacterium animalis B0 - O.D.'s between 0.8240 and 1.7727; Bifidobacterium animalis spp. lactis BB12 - O.D.'s between 0.7219 and 0.8798; Lacticaseibacillus casei 01 - O.D.'s between 0.9121 and 1.0249; and Lactobacillus acidophilus LA-5 - O.D.'s between 0.8595 and 0.9677), demonstrating a potential prebiotic activity of BSG extracts.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Research Intern...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Food Research International
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Research Intern...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Food Research International
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ana C. Cassoni;
    Ana C. Cassoni
    ORCID
    Harvested from ORCID Public Data File

    Ana C. Cassoni in OpenAIRE
    orcid Patrícia Costa;
    Patrícia Costa
    ORCID
    Harvested from ORCID Public Data File

    Patrícia Costa in OpenAIRE
    Marta W. Vasconcelos; orcid Manuela Pintado;
    Manuela Pintado
    ORCID
    Harvested from ORCID Public Data File

    Manuela Pintado in OpenAIRE

    Lignocellulosic biomass is the most abundant renewable resource on earth and currently most of this biomass is considered a low-value waste. Specifically, lignin is an underrated bioresource that is mostly burned for energy production and few value-added products have been created. Since the agro-food industry produces large amounts of wastes that can be potential sources of high-quality lignin, scientific efforts should be directed to this industry. Thus, this review provides a systematic overview of the trends and evolution of research on agro-food system-derived lignin (from 2010 to 2020), including the extraction of lignin from various agro-food sources and emergent applications of lignin in the agro-food chain. Crops with the highest average production/year (n = 26) were selected as potential lignin sources. The extraction process efficiency (yield) and lignin purity were used as indicators of the raw material potential. Overall, it is notable that research interest on agro-food lignin has increased exponentially over the years, both as source (567%) and application (128%). Wheat, sugarcane, and maize are the most studied sources and are the ones that render the highest lignin yields. As for the extraction methods used, alkaline and organosolv methods are the most employed (∼50%). The main reported applications are related to lignin incorporation in polymers (∼55%) and as antioxidant (∼24%). Studies on agro-food system-derived lignin is of most importance since there are numerous possible sources that are yet to be fully valorized and many promising applications that need to be further developed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    27
    citations27
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ana C. Cassoni;
    Ana C. Cassoni
    ORCID
    Harvested from ORCID Public Data File

    Ana C. Cassoni in OpenAIRE
    Inês Mota; orcid Patrícia Costa;
    Patrícia Costa
    ORCID
    Harvested from ORCID Public Data File

    Patrícia Costa in OpenAIRE
    Marta W. Vasconcelos; +1 Authors

    Grape stalks are lignocellulosic residues that can be valorized through the extraction of lignin - an underutilized biopolymer with high potential. Two lignin extraction methods, alkaline and deep eutectic solvents (DES), were studied, and experimental designs were carried out to obtain the best extraction conditions. The defined parameters for alkaline extraction allowed the recovery of ~48 % of lignin with low purity that was further improved with an autohydrolysis pretreatment (~79 % purity; ~32 % yield). Optimum parameters of DES method rendered high purity lignin (~90 %) without the need of a pretreatment and with a better yield (50.2 % (±2.3)) than the alkaline method. Both lignin fractions presented high antioxidant activities, being close to the antioxidant capacity of BHT for DPPH scavenging. Structural analysis proved the presence of lignin in both alkaline and DES samples with similar morphology. Overall, DES method was more efficient in the extraction of lignin from grape stalks besides its greener and sustainable nature. This work uses DES to extract lignin from this biomass while comparing it with a commonly classical method, proving that grape stalks can be used to extract lignin with a sustainable and efficient method rendering a final ingredient with value-added properties.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Biological Macromolecules
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Biological Macromolecules
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ricardo Gonçalves;
    Ricardo Gonçalves
    ORCID
    Harvested from ORCID Public Data File

    Ricardo Gonçalves in OpenAIRE
    orcid bw Flávio Menezes;
    Flávio Menezes
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Flávio Menezes in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yumin Duan; Ayon Tarafdar; orcid Vinay Kumar;
    Vinay Kumar
    ORCID
    Harvested from ORCID Public Data File

    Vinay Kumar in OpenAIRE
    orcid Prabakaran Ganeshan;
    Prabakaran Ganeshan
    ORCID
    Harvested from ORCID Public Data File

    Prabakaran Ganeshan in OpenAIRE
    +12 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    77
    citations77
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Nuno Ornelas Martins;
    Nuno Ornelas Martins
    ORCID
    Harvested from ORCID Public Data File

    Nuno Ornelas Martins in OpenAIRE

    Abstract In this article I argue that notions such as ecosystem services and strong sustainability can be best understood and developed within the theoretical framework advanced by the classical political economists, in which a circular conception of the economy is provided. I also argue that the development of notions such as ecosystem services and strong sustainability has been constrained by the dominance of neoclassical economics, which provides a linear conception of the economy and leads to an emphasis on weak sustainability, which in turn springs from an emphasis on substitutability and aggregate capital. When assessing the relevance of classical political economy for studying ecosystem services and strong sustainability I consider not only the contributions of the classical political economists, but also more recent contributions which draw upon the classical perspective, such as Piero Sraffa's and Amartya Sen's.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    61
    citations61
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility190
    visibilityviews190
    downloaddownloads137
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph