- home
- Search
- Energy Research
- Closed Access
- 13. Climate action
- 4. Education
- Western Sydney University
- Energy Research
- Closed Access
- 13. Climate action
- 4. Education
- Western Sydney University
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Jingjing Zhang; Jingjing Zhang;Abstract Using country level panel data from East Asia over the period 1998–2011, this paper examines the implications of international production fragmentation-induced intermediate goods trade on the link between energy consumption and carbon pollution. The paper focuses on the interaction effect between energy consumption and trade in intermediate goods on carbon emission. The empirical results presented suggest that international trade in intermediate goods decreases the positive impact on carbon emission of energy consumption. When compared with the trade in final goods, intermediate goods trade contributes to a greater decrease in carbon pollution resulting from energy consumption. These results confirm that the link between energy consumption and carbon pollution in East Asia is significantly affected by international production fragmentation-induced trade in intermediate goods. The results presented in this paper have some important policy implications.
Energy Policy arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.06.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.06.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Nirmala Dhungana;Natasja van Gestel;
Natasja van Gestel; John C. Zak; +1 AuthorsNatasja van Gestel
Natasja van Gestel in OpenAIRENirmala Dhungana;Natasja van Gestel;
Natasja van Gestel; John C. Zak;Natasja van Gestel
Natasja van Gestel in OpenAIREDavid T. Tissue;
David T. Tissue
David T. Tissue in OpenAIREpmid: 26391383
High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.
Oecologia arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3452-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3452-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Authors:Luke Collins;
Luke Collins; Ross A. Bradstock;Luke Collins
Luke Collins in OpenAIREMitchell G. Stares;
+2 AuthorsMitchell G. Stares
Mitchell G. Stares in OpenAIRELuke Collins;
Luke Collins; Ross A. Bradstock;Luke Collins
Luke Collins in OpenAIREMitchell G. Stares;
Mitchell G. Stares
Mitchell G. Stares in OpenAIREEli Ryan Bendall;
Eli Ryan Bendall
Eli Ryan Bendall in OpenAIREChristopher E. Gordon;
Christopher E. Gordon
Christopher E. Gordon in OpenAIREAbstractThe storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO2]. Temperate forests represent significant above‐ground carbon (AGC) “sinks” because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above‐ground biomass releasing carbon to the atmosphere, and the long‐term application of different fire‐regimes select for specific plant communities that sequester carbon at different rates. We investigated the latter process by quantifying AGC storage at 104 sites in the Sydney Basin Bioregion, Australia, relative to differences in components of the fire regime: frequency, severity and interfire interval. To predict the potential impacts of future climate change on fire/AGC interactions, we stratified our field sites across gradients of mean annual temperature and precipitation and quantified within‐ and between‐factor interactions between the fire and climate variables. In agreement with previous studies, large trees were the primary AGC sink, accounting for ~70% of carbon at sites. Generalised additive models showed that mean annual temperature was the strongest predictor of AGC storage, with a 54% near‐linear decrease predicted across the 6.1°C temperature range experienced at sites. Mean annual precipitation, fire frequency, fire severity and interfire interval were consistently poor predictors of total above‐ground storage, although there were some significant relationships with component stocks. Our results show resilience of AGC to frequent and severe wildfire and suggest temperature mediated decreases in forest carbon storage under future climate change predictions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors:He, Zhili;
Xu, Meiying; Deng, Ye;He, Zhili
He, Zhili in OpenAIREKang, Sanghoon;
+6 AuthorsKang, Sanghoon
Kang, Sanghoon in OpenAIREHe, Zhili;
Xu, Meiying; Deng, Ye;He, Zhili
He, Zhili in OpenAIREKang, Sanghoon;
Kellogg, Laurie; Wu, Liyou;Kang, Sanghoon
Kang, Sanghoon in OpenAIREVan Nostrand, Joy D.;
Van Nostrand, Joy D.
Van Nostrand, Joy D. in OpenAIREHobbie, Sarah E.;
Hobbie, Sarah E.
Hobbie, Sarah E. in OpenAIREReich, Peter B.;
Reich, Peter B.
Reich, Peter B. in OpenAIREZhou, Jizhong;
Zhou, Jizhong
Zhou, Jizhong in OpenAIREpmid: 20337697
Ecology Letters (2010) 13: 564–575AbstractUnderstanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology, but little is known about the influence of eCO2 on the structure and functioning (and consequent feedbacks to plant productivity) of the belowground microbial community. Here, using metagenomic technologies, we showed that 10 years of field exposure of a grassland ecosystem to eCO2 dramatically altered the structure and functional potential of soil microbial communities. Total microbial and bacterial biomass were significantly increased at eCO2, but fungal biomass was unaffected. The structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 as indicated by detrended correspondence analysis (DCA) of gene‐based pyrosequencing data and functional gene array data. While the abundance of genes involved in decomposing recalcitrant C remained unchanged, those involved in labile C degradation and C and N fixation were significantly increased under eCO2. Changes in microbial structure were significantly correlated with soil C and N contents and plant productivity. This study provides insights into potential activity of microbial community and associated feedback responses of terrestrial ecosystems to eCO2.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2010.01453.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu252 citations 252 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2010.01453.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Sadeghi, Mahsan;
Wood, Graeme S.; Samali, Bijan (R17646);Sadeghi, Mahsan
Sadeghi, Mahsan in OpenAIREDe Dear, Richard J.;
De Dear, Richard J.
De Dear, Richard J. in OpenAIREhandle: 1959.7/uws:56249
Abstract The impact of urban district morphology on the ventilation performance of a residential windcatcher was assessed in three different urban scenarios through a series of wind tunnel experiments. Geometry of the urban context and external obstacles affect the characteristics of wind flow reaching the individual buildings. The ventilation performance of windcatchers has previously been studied, however the impact of surrounding urban configurations on the efficiency of a residential windcatcher has not been investigated in the literature to date. This paper investigates the comfort cooling performance of a residential windcatcher in different urban arrays. Three phases of work are reported: (1) wind tunnel experiments to measure pressure distributions over a scale model to compare the effects of different urban contexts on rates of indoor air movement. Three urban scenarios have been identified as a) isolated windcatcher building, b) windcatcher building located in the corner of a neighbourhood, c) windcatcher building embedded in a neighbourhood. (2) a climatological study to predict hourly indoor air speeds for Sydney's contemporary climate TMY). Corresponding indoor operative temperature for each hour in a year was estimated using DesignBuilder/EnergyPlus. (3) a thermal comfort simulation using Standard Effective Temperature (SET*) to compare the comfort cooling potential of the residential windcatcher within the three different urban morphologies. The results for each urban scenario were benchmarked against the default case of conventional through-window ventilation without windcatcher in the same urban scenario. Of the three urban configurations investigated the case in which the windcatcher building was located in the corner of the neighbourhood presented the largest indoor airspeed increment compared with baseline conventional window ventilation (∆0.39 m/s). The indoor air speed generated by windcatcher surrounded by neighbouring structures increased by ∆0.33 m/s above that obtained with just through-window ventilation. The corner-located windcatcher delivered a cumulative total of 5,281 degree hours of comfort cooling during Sydney's typical summer, comparable with 5,207 degree hours for the windcatcher surrounded by buildings. The incremental indoor air speeds would feel equivalent to an average ∆ -3.4°C comfort cooling relative to the default through-window ventilation mode for corner located windcatcher.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2017Publisher:Springer Singapore Authors: Handa, Neera (R13151);From one extreme to the other, the spectrum of points of view on the crises facing the world today depicts a growing sense that humanity must live more lightly on the planet. What might be needed is a significant shift in attitudes and behaviours, as it is nothing less than a transformation that is needed to bring a change in a society dependent on the Western capitalist development model which promotes values such as; consumerism, competition and commodification of nature. Based on this premise of the need for a new perspective, and new ways of thinking, knowing and acting sustainably, the question this chapter aims to address is “how the internationalisation of education for sustainability might take place?” Redefining the internationalisation of higher education as a trans-cultural and transnational exchange of knowledge, pedagogies for teacher education are suggested through which opportunities for bringing innovative alternatives available in non-Western knowledge traditions can be employed.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-10-2550-1_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-10-2550-1_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Wilkinson, Sam;
Davidson, Michael; Morrison, Gregory M. (R20662);Wilkinson, Sam
Wilkinson, Sam in OpenAIREhandle: 1959.7/uws:63113
Abstract We present a historical analysis of the evolution of southern Western Australia’s electricity system between the 1880′s and 2016. By applying a multi-level perspective (MLP), we identify historic actions that impact the system’s ability to successfully transition towards higher rates of distributed energy. The adopted methodology seeks to address geographic and temporal weaknesses in the MLP approach. We found that the system is at a definitive branching point between a de/re-alignment (radical change) or reconfiguration (incremental change) pathway as up to 50% of the network’s energy requirement comes from distributed energy. Political and policy decision-making inertia at local, national and international levels increases the chances of returning to a decentralized electricity system reminiscent of those in place during the early 1900′s. The management of the transition in this small islanded system can provide lessons for larger systems that are yet to experience significant impacts from distributed energy.
Environmental Innova... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Innova... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Wiley Authors:Robert R. Dunn;
Robert R. Dunn;Robert R. Dunn
Robert R. Dunn in OpenAIRERenée M. Marchin;
Renée M. Marchin; +3 AuthorsRenée M. Marchin
Renée M. Marchin in OpenAIRERobert R. Dunn;
Robert R. Dunn;Robert R. Dunn
Robert R. Dunn in OpenAIRERenée M. Marchin;
Renée M. Marchin;Renée M. Marchin
Renée M. Marchin in OpenAIREWilliam A. Hoffmann;
Laura E. Bostic; Alice Ann Broadhead;William A. Hoffmann
William A. Hoffmann in OpenAIREdoi: 10.1111/pce.12790
pmid: 27392307
AbstractFuture climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring‐porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short‐term stomatal responses to VPD may not be representative of long‐term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu85 citations 85 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Katelaris, Constance H. (R12307);Several climate change-related predictions and observations have been documented for the Australian continent. Extreme weather events such as cycles of severe drought and damaging flooding are occurring with greater frequency and have a severe impact on human health. Two specific aspects of climate change affecting allergic and other respiratory disorders are outlined: firstly, the consequences of extreme weather events and secondly, the change in distribution of airborne allergens that results from various climate change factors.
Immunology and Aller... arrow_drop_down Immunology and Allergy Clinics of North AmericaArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iac.2020.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Immunology and Aller... arrow_drop_down Immunology and Allergy Clinics of North AmericaArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iac.2020.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors:Tao Kan;
Vladimir Strezov;
Vladimir Strezov
Vladimir Strezov in OpenAIRETim Evans;
Tim Evans
Tim Evans in OpenAIREJing He;
+2 AuthorsTao Kan;
Vladimir Strezov;
Vladimir Strezov
Vladimir Strezov in OpenAIRETim Evans;
Tim Evans
Tim Evans in OpenAIREJing He;
Ravinder Kumar;
Qiang Lu;Ravinder Kumar
Ravinder Kumar in OpenAIREhandle: 1959.7/uws:67995
Abstract Increasing global energy demand and concerns of carbon emissions have driven the utilisation of renewable sources such as biomass. Biomass pyrolysis in the presence of catalyst, i.e., biomass catalytic pyrolysis (CP), is one of the most efficient routes for generating renewable hydrocarbon fuels or commodity chemicals. Most previous review papers on biomass CP focused on the summary of catalyst classification, properties and performance based on product yields and oil quality. Information on biomass CP process especially effects of different reaction atmospheres has not been reviewed or discussed in sufficient detail. This paper aims to provide a review and insights of the essential process factors and system structure of the lignocellulosic biomass CP with emphasis on process performance indexes such as bio-oil’s effective hydrogen to carbon ratio, deoxygenation degree, carbon efficiency and energy efficiency. The paper sections are organised in order of biomass CP catalysts, biomasss CP assessment, modification of essential process factors (e.g., biomass pre-treatment, co-feeding with other materials, atmosphere and temperature) and variations in the system structure (e.g., heat source alternatives, staged catalysis and process integration). Variations in process factors and system structure can possibly tailor the products and improve the economic attraction. A number of questions about biomass CP are still unclear. The current status, challenges and future research directions of biomass CP are also discussed in the paper. The comprehensive review and insights of the biomass CP process in this work will provide reference for the research and industrialisation of biomass CP for renewable fuel production.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu171 citations 171 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu