Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecology Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology Letters
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Ecology Letters
Article . 2010
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2

Authors: He, Zhili; Xu, Meiying; Deng, Ye; Kang, Sanghoon; Kellogg, Laurie; Wu, Liyou; Van Nostrand, Joy D.; +3 Authors

Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2

Abstract

Ecology Letters (2010) 13: 564–575AbstractUnderstanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology, but little is known about the influence of eCO2 on the structure and functioning (and consequent feedbacks to plant productivity) of the belowground microbial community. Here, using metagenomic technologies, we showed that 10 years of field exposure of a grassland ecosystem to eCO2 dramatically altered the structure and functional potential of soil microbial communities. Total microbial and bacterial biomass were significantly increased at eCO2, but fungal biomass was unaffected. The structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 as indicated by detrended correspondence analysis (DCA) of gene‐based pyrosequencing data and functional gene array data. While the abundance of genes involved in decomposing recalcitrant C remained unchanged, those involved in labile C degradation and C and N fixation were significantly increased under eCO2. Changes in microbial structure were significantly correlated with soil C and N contents and plant productivity. This study provides insights into potential activity of microbial community and associated feedback responses of terrestrial ecosystems to eCO2.

Keywords

580, metagenomics, Nitrogen, 0602 - Ecology, Carbon Dioxide, soil microbial ecology, Carbon, Biomass, Metagenomics, Ecosystem, Soil Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 1%
Top 1%