- home
- Search
- Energy Research
- Open Access
- Closed Access
- Embargo
- 7. Clean energy
- National Research Council
- Energy Research
- Open Access
- Closed Access
- Embargo
- 7. Clean energy
- National Research Council
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015 ItalyPublisher:Walter de Gruyter GmbH Authors: Mario Pagliaro; Lorenzo Albanese; Francesco Meneguzzo; Rosaria Ciriminna;Abstract Provided that LED street lighting is guided by quality principles, outdoor illumination using light-emitting diodes will have a significant global impact helping to reduce carbon dioxide emissions, save relevant amounts of electricity and enhance the quality of life in cities as well as in remote areas. This study summarizes recent findings providing guidelines for further progress in this crucially important technology on the common pathway to sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2015-0020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2015-0020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionM. Spolaore; N. Vianello; Matteo Agostini; Lorella Carraro; Paolo Scarin; Gianluca Spizzo;The edge of the RFX-mod (R=2m, a=0.46m) Reversed Field Pinch device is characterized by weak magnetic chaos affecting ion and electron diffusion. Edge particle transport is strongly influenced by a toroidal asymmetry caused by magnetic islands and an ambipolar radial electric field ensures local neutrality, in a way similar to the stochastic edge of tokamaks when resonant magnetic perturbations (RMPs) are applied. The H? emission and floating potential Vf measured in different poloidal and toroidal positions shows a helical shape of the Plasma Wall Interaction, fitting the spatial periodicity of the innermost resonant tearing mode (m/n=1/7) [1]. However, detailed measurements, along the poloidal (parallel) direction, of the electron density and temperature with the Thermal Helium Beam, and of the floating potential Vf with electrostatic probes, show that the response of the edge plasma depends on the poloidal angle, in a more complicated way than a pure 1/7 harmonic. In particular, multiple poloidal harmonics can be recognized in the measurements. The results are robust, because data analysis has been performed with different techniques: in terms of correlations between Vf signals and the corresponding local flux-surface displacement, by the conditional average technique applied at Vf signals, and finally also in terms of a travelling helical angle frame as reference of the measurements. The interpretation of the results is not obvious, but it highlights the fact that the correlation between magnetic islands and kinetic properties of the edge plasma is not a simple one-to-one causal relationship, as it is often assumed in RMP studies in tokamaks.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Antonio Mariani; Maria Laura Mastellone; Biagio Morrone; Maria Vittoria Prati; Andrea Unich;doi: 10.3390/en13020314
Organic Rankine Cycle (ORC) power plants are characterized by high efficiency and flexibility, as a result of a high degree of maturity. These systems are particularly suited for recovering energy from low temperature heat sources, such as exhaust heat from other plants. Despite ORCs having been assumed to be appropriate for stationary power plants, since their layout, size and weight constraints are less stringent, they represent a possible solution for improving the efficiency of propulsion systems for road transportation. The present paper investigates an ORC system recovering heat from the exhaust gases of an internal combustion engine. A passenger car with a Diesel engine was tested over a Real Driving Emission (RDE) cycle. During the test exhaust gas mass flow rate and temperature have been measured, thus calculating the enthalpy stream content available as heat addition to ORC plant in actual driving conditions. Engine operating conditions during the test were discretized with a 10-point grid in the engine torque–speed plane. The ten discretized conditions were employed to evaluate the ORC power and the consequent engine efficiency increase in real driving conditions for the actual Rankine cycle. N-pentane (R601) was identified as the working fluid for ORC and R134a was employed as reference fluid for comparison purposes. The achievable power from the ORC system was calculated to be between 0.2 and 1.3 kW, with 13% system efficiency. The engine efficiency increment ranged from 2.0% to 7.5%, with an average efficiency increment of 4.6% over the RDE test.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13020314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13020314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 France, ItalyPublisher:Hindawi Limited Authors: Leonid Khriachtchev; Stefano Ossicini; Fabio Iacona; Fabrice Gourbilleau;doi: 10.1155/2012/872576
The combination of photonics and silicon technology is a great challenge because of the potentiality of coupling electronics and optical functions on a single chip. Silicon nanocrystals are promising in various areas of photonics especially for light-emitting functionality and for photovoltaic cells. This review describes the recent achievements and remaining challenges of Si photonics with emphasis on the perspectives of Si nanoscale materials. Many of the results and properties can be simulated and understood based on theoretical studies. However, some of the key questions like the light-emitting mechanism are subjects of intense debates despite a remarkable progress in the recent years. Even more complex and important is to move the known experimental observations towards practical applications. The demonstrated devices and approaches are often too complex and/or have too low efficiency. However, the challenge to combine optical and electrical functions on a chip is very strong, and we expect more research activity in the field of Si nanophotonics in the future.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2012Full-Text: https://hal.science/hal-00738420Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2012/872576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 70 Powered bymore_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2012Full-Text: https://hal.science/hal-00738420Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2012/872576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:American Meteorological Society Authors: Fabio Monforti-Ferrario; Thomas Huld; Mario Marcello Miglietta;AbstractTo assess the possibility of a combined use of solar and wind energy over Europe, a continental-scale dataset, with high spatial and temporal resolution and covering three years of data (2012–14), is analyzed. The 100-m wind is taken from the ECMWF analyses/short-range forecasts. To obtain hourly values of potentially generated electricity, wind is transformed into normalized electricity-generation data by considering a normalized output function representing the most common wind turbines available in the European market. A strong monthly variation is present, showing the maximum potential at high latitudes in winter and shifting to specific areas in the Mediterranean Sea region in summer. Hourly data for solar radiation are extracted from the satellite-retrieval scheme of the Satellite Application Facility on Climate Monitoring (CM SAF). The energy output of photovoltaic systems is calculated by considering the amount of solar radiation that arrives at the surface of the photovoltaic modules. Together with the main functional dependence on latitude, the photovoltaic potential depends also on longitude, as a consequence of the average pressure patterns. Last, the local correlation of wind and solar resources is assessed. For hourly data, a weak anticorrelation prevails in the domain, suggesting a degree of local complementarity of the two sources in many regions. A strong effect from the diurnal cycle is observed in some regions. Also, a significant dependence on the month (higher absolute values in summer) and on the time scale (increase in absolute value with the extension of the time window that is considered for the correlation) is apparent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-16-0031.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-16-0031.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Nabila Khurshid; Jamila Khurshid; Usman Shakoor; Kashif Ali;Globalization has resulted in several technical advancements, including the ability to connect people all over the world and drive the economies with higher agricultural output. With agricultural productivity expanding quickly, the negative impact of globalization on environmental degradation is being disregarded. Rapid agricultural expansion and globalization have resulted in significant increases in energy consumption and CO2 emissions. The primary purpose of this research is to assess the role of Pakistan’s massive agriculture industry in encouraging or discouraging CO2 emissions under Globalization scenario. Therefore, we applied Non-linear Autoregressive Distributive Lag Nonlinear Autoregressive Distributed Lag model from 1971 to 2021. Our results showed that in presence of globalization, agricultural production shows asymmetries in case of positive and negative shocks. A positive shock in Agricultural production increased the CO2 emissions while negative shock in agricultural production decreased CO2 emissions. Furthermore, GDP, energy consumption and economic globalization have positive association with economic globalization while on the other hand, surprisingly trade and urbanization in the presence of globalization have negative association with CO2 emissions. Environmental deterioration due to greenhouse emissions causes climatic variation in the economy and several mitigation strategies are required on sustainable basis in Pakistan. So, our study recommends that farmers of Pakistan should adopt organic farming this will help to reduce CO2 emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1053234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1053234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Matthew Gidden; Malte Meinshausen; Malte Meinshausen; Keywan Riahi; Keywan Riahi; Daniel Huppmann; Leon Clarke; Joeri Rogelj; Joeri Rogelj; Joeri Rogelj; Zebedee Nicholls; Volker Krey; Volker Krey;pmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 ItalyPublisher:Elsevier BV Authors: Ephraim Gukelberger; Bartolo Gabriele; Jan Hoinkis; Alberto Figoli;Rapid population growth invokes the need for a vast amount of water conservation. Many centralized water treatment systems will reach their limits and face difficulties to provide clean industrial water to rural areas. The infrastructure for water distribution is dilapidated in many regions and only little of the wastewater is currently being recycled. One solution could be the expansion of decentralized membrane bioreactor (MBR) systems in peri-urban areas. MBR achieves excellent water qualities, whereas the comparatively high energy consumption is the main drawback. Therefore, MBR plants need to be optimized in their specific energy consumption to obtain a high degree of self-sufficiency for decentralized locations. There is a dire need for innovative controlling strategies and efficient coupling with energy supply systems through novel applications. This chapter will highlight the basic approaches to reduce the MBR's overall energy consumption and ways to establish sustainable, autonomous operations without sacrificing the process quality.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020 ItalyPublisher:IEEE Authors: Carlo Mastroianni; Giandomenico Spezzano; Andrea Giordano; Luigi Scarcello;In recent years, the exploitation of weather-dependent renewable energy sources, available at distributed local sites, has led to the increased volatility of electrical energy supply. In order to compensate for the intermittent nature of renewable energy sources and remedy to possible imbalance problems on the national grids, the users of the electricity system are required to reduce interactions with the grid and increase the self-consumption of energy. Accordingly, prosumers equipped with local generation and storage systems, and enriched with the Internet of Things (IoT) technology, are encouraged to join the energy communities, as they can produce, store and share energy with the other members of the community. The proper sizing of storage systems is essential in this context. This paper presents an IoT-based management model that exploits the energy sharing among the prosumers of a community, with the aim of evaluating the impact of the storage systems' sizes on the energy self-consumption and on the cost savings that can be achieved.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015 ItalyPublisher:Walter de Gruyter GmbH Authors: Mario Pagliaro; Lorenzo Albanese; Francesco Meneguzzo; Rosaria Ciriminna;Abstract Provided that LED street lighting is guided by quality principles, outdoor illumination using light-emitting diodes will have a significant global impact helping to reduce carbon dioxide emissions, save relevant amounts of electricity and enhance the quality of life in cities as well as in remote areas. This study summarizes recent findings providing guidelines for further progress in this crucially important technology on the common pathway to sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2015-0020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2015-0020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionM. Spolaore; N. Vianello; Matteo Agostini; Lorella Carraro; Paolo Scarin; Gianluca Spizzo;The edge of the RFX-mod (R=2m, a=0.46m) Reversed Field Pinch device is characterized by weak magnetic chaos affecting ion and electron diffusion. Edge particle transport is strongly influenced by a toroidal asymmetry caused by magnetic islands and an ambipolar radial electric field ensures local neutrality, in a way similar to the stochastic edge of tokamaks when resonant magnetic perturbations (RMPs) are applied. The H? emission and floating potential Vf measured in different poloidal and toroidal positions shows a helical shape of the Plasma Wall Interaction, fitting the spatial periodicity of the innermost resonant tearing mode (m/n=1/7) [1]. However, detailed measurements, along the poloidal (parallel) direction, of the electron density and temperature with the Thermal Helium Beam, and of the floating potential Vf with electrostatic probes, show that the response of the edge plasma depends on the poloidal angle, in a more complicated way than a pure 1/7 harmonic. In particular, multiple poloidal harmonics can be recognized in the measurements. The results are robust, because data analysis has been performed with different techniques: in terms of correlations between Vf signals and the corresponding local flux-surface displacement, by the conditional average technique applied at Vf signals, and finally also in terms of a travelling helical angle frame as reference of the measurements. The interpretation of the results is not obvious, but it highlights the fact that the correlation between magnetic islands and kinetic properties of the edge plasma is not a simple one-to-one causal relationship, as it is often assumed in RMP studies in tokamaks.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Antonio Mariani; Maria Laura Mastellone; Biagio Morrone; Maria Vittoria Prati; Andrea Unich;doi: 10.3390/en13020314
Organic Rankine Cycle (ORC) power plants are characterized by high efficiency and flexibility, as a result of a high degree of maturity. These systems are particularly suited for recovering energy from low temperature heat sources, such as exhaust heat from other plants. Despite ORCs having been assumed to be appropriate for stationary power plants, since their layout, size and weight constraints are less stringent, they represent a possible solution for improving the efficiency of propulsion systems for road transportation. The present paper investigates an ORC system recovering heat from the exhaust gases of an internal combustion engine. A passenger car with a Diesel engine was tested over a Real Driving Emission (RDE) cycle. During the test exhaust gas mass flow rate and temperature have been measured, thus calculating the enthalpy stream content available as heat addition to ORC plant in actual driving conditions. Engine operating conditions during the test were discretized with a 10-point grid in the engine torque–speed plane. The ten discretized conditions were employed to evaluate the ORC power and the consequent engine efficiency increase in real driving conditions for the actual Rankine cycle. N-pentane (R601) was identified as the working fluid for ORC and R134a was employed as reference fluid for comparison purposes. The achievable power from the ORC system was calculated to be between 0.2 and 1.3 kW, with 13% system efficiency. The engine efficiency increment ranged from 2.0% to 7.5%, with an average efficiency increment of 4.6% over the RDE test.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13020314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13020314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 France, ItalyPublisher:Hindawi Limited Authors: Leonid Khriachtchev; Stefano Ossicini; Fabio Iacona; Fabrice Gourbilleau;doi: 10.1155/2012/872576
The combination of photonics and silicon technology is a great challenge because of the potentiality of coupling electronics and optical functions on a single chip. Silicon nanocrystals are promising in various areas of photonics especially for light-emitting functionality and for photovoltaic cells. This review describes the recent achievements and remaining challenges of Si photonics with emphasis on the perspectives of Si nanoscale materials. Many of the results and properties can be simulated and understood based on theoretical studies. However, some of the key questions like the light-emitting mechanism are subjects of intense debates despite a remarkable progress in the recent years. Even more complex and important is to move the known experimental observations towards practical applications. The demonstrated devices and approaches are often too complex and/or have too low efficiency. However, the challenge to combine optical and electrical functions on a chip is very strong, and we expect more research activity in the field of Si nanophotonics in the future.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2012Full-Text: https://hal.science/hal-00738420Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2012/872576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 70 Powered bymore_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2012Full-Text: https://hal.science/hal-00738420Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2012/872576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:American Meteorological Society Authors: Fabio Monforti-Ferrario; Thomas Huld; Mario Marcello Miglietta;AbstractTo assess the possibility of a combined use of solar and wind energy over Europe, a continental-scale dataset, with high spatial and temporal resolution and covering three years of data (2012–14), is analyzed. The 100-m wind is taken from the ECMWF analyses/short-range forecasts. To obtain hourly values of potentially generated electricity, wind is transformed into normalized electricity-generation data by considering a normalized output function representing the most common wind turbines available in the European market. A strong monthly variation is present, showing the maximum potential at high latitudes in winter and shifting to specific areas in the Mediterranean Sea region in summer. Hourly data for solar radiation are extracted from the satellite-retrieval scheme of the Satellite Application Facility on Climate Monitoring (CM SAF). The energy output of photovoltaic systems is calculated by considering the amount of solar radiation that arrives at the surface of the photovoltaic modules. Together with the main functional dependence on latitude, the photovoltaic potential depends also on longitude, as a consequence of the average pressure patterns. Last, the local correlation of wind and solar resources is assessed. For hourly data, a weak anticorrelation prevails in the domain, suggesting a degree of local complementarity of the two sources in many regions. A strong effect from the diurnal cycle is observed in some regions. Also, a significant dependence on the month (higher absolute values in summer) and on the time scale (increase in absolute value with the extension of the time window that is considered for the correlation) is apparent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-16-0031.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-16-0031.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Nabila Khurshid; Jamila Khurshid; Usman Shakoor; Kashif Ali;Globalization has resulted in several technical advancements, including the ability to connect people all over the world and drive the economies with higher agricultural output. With agricultural productivity expanding quickly, the negative impact of globalization on environmental degradation is being disregarded. Rapid agricultural expansion and globalization have resulted in significant increases in energy consumption and CO2 emissions. The primary purpose of this research is to assess the role of Pakistan’s massive agriculture industry in encouraging or discouraging CO2 emissions under Globalization scenario. Therefore, we applied Non-linear Autoregressive Distributive Lag Nonlinear Autoregressive Distributed Lag model from 1971 to 2021. Our results showed that in presence of globalization, agricultural production shows asymmetries in case of positive and negative shocks. A positive shock in Agricultural production increased the CO2 emissions while negative shock in agricultural production decreased CO2 emissions. Furthermore, GDP, energy consumption and economic globalization have positive association with economic globalization while on the other hand, surprisingly trade and urbanization in the presence of globalization have negative association with CO2 emissions. Environmental deterioration due to greenhouse emissions causes climatic variation in the economy and several mitigation strategies are required on sustainable basis in Pakistan. So, our study recommends that farmers of Pakistan should adopt organic farming this will help to reduce CO2 emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1053234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1053234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Matthew Gidden; Malte Meinshausen; Malte Meinshausen; Keywan Riahi; Keywan Riahi; Daniel Huppmann; Leon Clarke; Joeri Rogelj; Joeri Rogelj; Joeri Rogelj; Zebedee Nicholls; Volker Krey; Volker Krey;pmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 ItalyPublisher:Elsevier BV Authors: Ephraim Gukelberger; Bartolo Gabriele; Jan Hoinkis; Alberto Figoli;Rapid population growth invokes the need for a vast amount of water conservation. Many centralized water treatment systems will reach their limits and face difficulties to provide clean industrial water to rural areas. The infrastructure for water distribution is dilapidated in many regions and only little of the wastewater is currently being recycled. One solution could be the expansion of decentralized membrane bioreactor (MBR) systems in peri-urban areas. MBR achieves excellent water qualities, whereas the comparatively high energy consumption is the main drawback. Therefore, MBR plants need to be optimized in their specific energy consumption to obtain a high degree of self-sufficiency for decentralized locations. There is a dire need for innovative controlling strategies and efficient coupling with energy supply systems through novel applications. This chapter will highlight the basic approaches to reduce the MBR's overall energy consumption and ways to establish sustainable, autonomous operations without sacrificing the process quality.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020 ItalyPublisher:IEEE Authors: Carlo Mastroianni; Giandomenico Spezzano; Andrea Giordano; Luigi Scarcello;In recent years, the exploitation of weather-dependent renewable energy sources, available at distributed local sites, has led to the increased volatility of electrical energy supply. In order to compensate for the intermittent nature of renewable energy sources and remedy to possible imbalance problems on the national grids, the users of the electricity system are required to reduce interactions with the grid and increase the self-consumption of energy. Accordingly, prosumers equipped with local generation and storage systems, and enriched with the Internet of Things (IoT) technology, are encouraged to join the energy communities, as they can produce, store and share energy with the other members of the community. The proper sizing of storage systems is essential in this context. This paper presents an IoT-based management model that exploits the energy sharing among the prosumers of a community, with the aim of evaluating the impact of the storage systems' sizes on the energy self-consumption and on the cost savings that can be achieved.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu