- home
- Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- Embargo
- 3. Good health
- English
- Energy Research
- Open Access
- Closed Access
- Open Source
- Embargo
- 3. Good health
- English
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Pimentel, Vitor; Mariano, Diego; Cantão, Letícia Xavier Silva; Bastos, Luana Luiza; +4 AuthorsPimentel, Vitor; Mariano, Diego; Cantão, Letícia Xavier Silva; Bastos, Luana Luiza; Fischer, Pedro; Lima, Leonardo Henrique França de; Fassio, Alexandre Victor; de-Melo Minardi, Raquel Cardoso;Description of the four files: contacts.xlsx List of detected contacts for the three case studies pymol_files_case_study_1.zip Contains files in PDB format of the analyzed structures, and files in PML format used to display visualizations in the PyMOL tool for the case study 1: comparison between contacts of myoglobin against hemoglobin pymol_files_case_study_2.zip Contains files in PDB format of the analyzed structures, and files in PML format used to display visualizations in the PyMOL tool for the case study 2: comparison between contacts of RBDs of SARS-CoV-1 vs. SARS-CoV-2 both complexed with the cell receptor ACE2 pymol_files_case_study_3.zip Contains files in PDB format of the analyzed structures, and files in PML format used to display visualizations in the PyMOL tool for the case study 3: comparison between contacts of glucose-tolerant vs. non-tolerant β-glucosidases
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4046537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4046537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 19 Oct 2015Publisher:Dryad Authors: Ament, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; +2 AuthorsAment, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; Van der Weijden, Trudy; Kleijnen, Jos;doi: 10.5061/dryad.cr020
Objectives: To evaluate (1) the state of the art in sustainability research and (2) the outcomes of professionals’ adherence to guideline recommendations in medical practice. Design: Systematic review. Data sources: Searches were conducted until August 2015 in MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and the Guidelines International Network (GIN) library. A snowball strategy, in which reference sections of other reviews and of included papers were searched, was used to identify additional papers. Eligibility criteria: Studies needed to be focused on sustainability and on professionals’ adherence to clinical practice guidelines in medical care. Studies had to include at least 2 measurements: 1 before (PRE) or immediately after implementation (EARLY POST) and 1 measurement longer than 1 year after active implementation (LATE POST). Results: The search retrieved 4219 items, of which 14 studies met the inclusion criteria, involving 18 sustainability evaluations. The mean timeframe between the end of active implementation and the sustainability evaluation was 2.6 years (minimum 1.5–maximum 7.0). The studies were heterogeneous with respect to their methodology. Sustainability was considered to be successful if performance in terms of professionals’ adherence was fully maintained in the late postimplementation phase. Long-term sustainability of professionals’ adherence was reported in 7 out of 18 evaluations, adherence was not sustained in 6 evaluations, 4 evaluations showed mixed sustainability results and in 1 evaluation it was unclear whether the professional adherence was sustained. Conclusions: (2) Professionals’ adherence to a clinical practice guideline in medical care decreased after more than 1 year after implementation in about half of the cases. (1) Owing to the limited number of studies, the absence of a uniform definition, the high risk of bias, and the mixed results of studies, no firm conclusion about the sustainability of professionals’ adherence to guidelines in medical practice can be drawn. Results Systematic review sustainabilityFor this review, 4219 items were retrieved and screened based on title and abstract, 185 studies were assessed based on full text reading and 14 studies were selected for analyses. This data file contains the endnote file with all items and the classification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Jan 2023Publisher:Dryad Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; Leach, Nicholas; Smith, Christopher J.; Gill-Wiehl, Annelise; Landesman, Katherine; Bailis, Robert;Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 16 Oct 2022Publisher:Dryad Authors: Brown, Gregory P.; Hudson, Cameron; Shine, Richard;Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.7m0cfxpz3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.7m0cfxpz3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gonzalez, Alan R.; Lin, Ting;{"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo A. Mathieu; B. Aubry; E. Chhim; M. Jobe; M. Arnaud;{"references": ["T Gopinathan, K P Arul Shri: Simulation of Recharging Battery of the\nPacemaker using Piezoelectric Crystal from the Pulse in Aorta, Thesis,\nDec 2011.", "H.W. Ko: US Patent 3456134A: Piezoelectric Energy Converter for\nElectronic Implants, 1969.", "A. Badel: R\u00e9cup\u00e9ration d'Energie et Contr\u00f4le Vibratoire par El\u00e9ments\nPi\u00e9zo\u00e9lectriques Suivant une Approche Non Lin\u00e9aire, Ph.D. Thesis,\nUniversit\u00e9 de Savoie, 2008.", "M. Deterre: Toward an Energy Harvester for Leadless Pacemakers,\nPh.D. Thesis, Paris-Sud Univ. 2013.", "N. Andrew: Redington,CardiacDept, Brompton Hospital, Fulham Road,\nLondon SW3 6HP, in press.", "R. White, G. Savage, M. Zdeblick: US Patent 7729768 B2: Implantable\nCardiac Motion Powered Piezoelectric Energy Source.", "S. Priya, D.J. Inman: Energy Harvesting Technologies.", "N. Bassiri-Gharb : Piezoelectric Mems: Materials and Devices,\nPiezoelectric and Acoustic Materials for Transducer Applications, A.\nSafari, E.K. Akdogan, eds., Springer US, 2008, pp. 413\u2013430.", "W. Clark, C. Mo : Energy Harvesting Technologies, Ch.16, pp.405-430,\nS. Priya, D.J. Inman eds., Springer, 2009.\n[10] M. Deterre, E. Lefeuvre, E. Dufour-Gergam : An Active Piezoelectric\nEnergy Extraction Method for Pressure Energy Harvesting, Smart\nMaterials and Structures, Vol.21(8), 085004, 2012.\n[11] M.A. Karami, D.J. Inman: Powering Pacemakers from Heartbeat\nVibrations Using Linear and Nonlinear Energy Harvesters, Appl. Phys.\nLett. 100, 042901 (2012), in press.\n[12] S.R Anton, H.A Sodano : A Review of Power Harvesting Using\nPiezoelectric Materials (2003\u20132006), Smart Materials and Structures,\nVol.16(3), R1, 2007."]} Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1112274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 79 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1112274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Yougang Bernadette; Robert, Wanda;{"references": ["BENAZZOU L. et al (2021), \u00ab Covid-19 : An unexpected lever for accelerating the transformation of organizations in Morocco \u00bb, International journal of management sciences. Vol.4, n\u00b02 (2021)", "ELWARDI K. et al (2021), \u00ab Management of the Covid19 crisis : Case of a Moroccan public hospital \u00bb,International journal of management sciences. Vol.4, n\u00b02 (2021)", "De Briey V. (2005), \u00ab Spotlight on microfinance in 2005 \u00bb, Regards Economique, n\u00b028, Mars, pp.", "CAMPION, A. (2003), \"Improving internal control. Practical guide for use by microfinance institutions \", Practical Guide n \u00b0 1, June.", "ALCHIAN A. (1969), \u00ab Corporate Management and Property Rights: Economic Policy and the Regulation of Corporate Securities \u00bb, (publishedby H. Manne, Washington D.C.), American Institute for Public Policy Research.", "DEMSETZ H. (1967), \"Towards a Theory of Property Rights\", American Economic Review, May, pp.347-359.", "FURUBOTN E. & PEJOVITCH S. (1972), \"Property Rights and Economic Theory: A Survey of Recent Literature\", Journal of Economic Literature, December", "ALESSI de L. (1983), \u00ab Property Rights, Transaction Costs and The X-efficiency \u00bb, American Economic Review, vol. 73, n\u00b0 1, March, p. 64-81", "AMANN, B., (1999), \u00ab The theory of property rights \u00bb, in Koenig G\u00e9rard (ed.), New Theories for Managing the Enterprise of the XXIst Century, Economica, Paris, 13-60"]} The end of decade 1990 is marked by the proliferation of microfinance institutions that constitute powerful instruments for fight against poverty and the reduction of unemployment. In the meanwhile, considering the ephemeral character of some of those institutions, the object of this study is to understand the elements that are at the basis of the life expectancy of microfinance institutions in Cameroun in covid 19 context. The literature shows that variables such as a system of internal control and financial objectives influence the longevity of microfinance institutions. The test of chisquare on 35 institutions of microfinance observed within the period of 2004-2020 in Cameroun enable to establish connexions among variables. The results obtained show that the survival of microfinance institutions in Cameroun depends on internal control systems the board of directors, the separation of functions of president and that of general manager, the frequency of meeting of the board of directors, the effective presence participation of the members of the board of directors to the meetings and the joint decision making by the boards of directors and the general management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7672459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7672459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1965Publisher:Zenodo Authors: A. K. Sen; (Miss) Kalyani Mitra;4-Anilinoquinolines have been prepared by cyclodehydration of \(\beta\)-anilinoacryloanilides with polyphosphoric acid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6507598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6507598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Zenodo Authors: Francis William S; Imtiaz Ahmed Choudhury; Ananda Kumar Eriki; A. John Rajan;Diesel Engines emit complex mixtures of inorganic and organic compounds in the form of both solid and vapour phase particles. Most of the particulates released are ultrafine nanoparticles which are detrimental to human health and can easily enter the body by respiration. The emissions standards on particulate matter release from diesel engines are constantly upgraded within the European Union and with future regulations based on the particles numbers released instead of merely mass, the need for effective aftertreatment devices will increase. Standard particulate filters in the form of wall flow filters can have problems with high soot accumulation, producing a large exhaust backpressure. A potential solution would be to combine the standard filter with a flow through filter to reduce the load on the wall flow filter. In this paper soot particle trapping has been simulated in different continuous flow filters of monolithic structure including the use of promoters, at laminar flow conditions. An Euler Lagrange model, the discrete phase model in Ansys used with user defined functions for forces acting on particles. A method to quickly screen trapping of 5 nm and 10 nm particles in different catalysts designs with tracers was also developed. Simulations of square duct monoliths with promoters show that the strength of the vortices produced are not enough to give a high amount of particle deposition on the catalyst walls. The smallest particles in the simulations, 5 and 10 nm particles were trapped to a higher extent, than larger particles up to 1000 nm, in all studied geometries with the predominant deposition mechanism being Brownian diffusion. The comparison of the different filters designed with a wall flow filter does show that the options for altering a design of a flow through filter, without imposing a too large pressure drop penalty are good. {"references": ["M.Votsmeier, T. Kreuzer, J. Gieshioff, Automobile Exhaust Control,\nUllmann-s Encyclopedia of Industrial Chemistry,\n", "Kalla http://www.dieselnet.com/standards/eu/hd.php.", "A.M.Hochhauser, Gasoline and Other Motor Fuels, Kirk-Othmer\nEncyclopedia of Chemical Technology. 2010-01-20,\n", "M.Zhen, S. Banerjee, Diesel oxidation catalyst and particulate filter\nmodelling in active Flow configurations, Applied Thermal\nEnmgineering 29 (2009) 3021-3035.", "J.Uchisawa, A. Obuchi, A. Ohi, T. Nanba, N. Nakayama, Activity of\ncatalysts supported on heat-resistant ceramic cloth for diesel soot\noxidation, Power Technology 180 (2008) 39-44.\n[10] W.A. Majewski, Diesel Oxidation Catalyst, www. Dieselnet.com. 2009.\n[11] Schaefer-Sindlingera, I. Lappasa, C.C. Vogta, et al, Efficient material\ndesign for diesel particulate filters, Topics in Catalysis Vols. 42-43,\n2007.\n[12] L. Andreassi, S. Cordiner, V. Mulone, M. Presti, A mixed numericalexperimental\nanalysis procedure for non-blocking metal supported soot\ntrap design. SAE 2002-01-2782), 2002.\n[13] W.A. Majewski, Flow-Through Filters, www. Dieselnet. Com, 2009.\n[14] B. Andersson, R. Andersson, L. Hakansson, et al, Computational Fluid\nDynamics for Chemical Enginers, fifth edition, Gothenburg, 2009.\n[15] M. Sommerfield, B.Wan Wachem, R. Oliemans, (eds), Best Practice\nGuidelines for CFD of Dispersed Multiphase Flows\n(ERCOFTAC/SIAMUF, Goteborg, 2008).\n[16] R. Bruck, P. Hirth, M. Reizig, Metal Supported Flow-Through\nParticulate Trap; a Non-Blocking Solution, SAE 2001-01-1950, 2001."]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1085228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 24 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1085228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Report 2018Publisher:German Development Institute / Deutsches Institut für Entwicklungspolitik (DIE) Authors: Matias, Denise Margaret; Fernández, Raúl; Hutfils, Marie-Lena; Winges, Maik;doi: 10.23661/bp19.2018
In the face of increasingly frequent extreme weather events, the need to manage climate risk becomes more urgent, especially for the most vulnerable countries and communities. With the aim of reducing vulnerability, climate risk transfer in the form of climate risk insurance (CRI) has been gaining attention in climate policy discussions. When properly designed, CRI acts as a safety net against climate change impacts by providing financial support after an extreme weather event. Two main types of insurance enable payouts: indemnity (traditional) insurance or predefined parameters (index-based) insurance. Individuals, groups, or even governments may take out policies with either type of insurance and receive payouts directly (insurer to beneficiary payout) or indirectly (insurer to aggregator to beneficiary payout). Direct insurance is usually implemented at the micro-level with individual policyholders. Indirect insurance is usually implemented through group contracts at the meso-level through risk aggregators and at the macro-level through the state. While promising, risk transfer in the form of CRI also has its share of challenges. Within the United Nations Framework Convention on Climate Change, the lack of accessibility and affordability of CRI for poor and vulnerable groups have been identified as barriers to uptake. In light of climate justice, asking the poor and climate-vulnerable groups - most of whom do not contribute substantially to anthropogenic climate change - to solely carry the financial burden of risk transfer is anything but just. Employing a human rights-based approach to CRI may ensure that the resilience of poor and climate-vulnerable groups is enhanced in a climate-just manner. Indigenous peoples are some of the poorest and most climate vulnerable groups. Often marginalised, they rarely have access to social protection. The strong communal relationship of indigenous peoples facilitates their participation in community-based organisations (CBOs). CBOs are a suitable vehicle for meso-insurance, in which risk is aggregated and an insurance policy belongs to a group. In this way, CBOs can facilitate service provision that would otherwise be beyond the reach of individuals. Conclusions of this briefing paper draw on a conceptual analysis of meso-insurance and the results of field research conducted in March 2018 with indigenous Palaw’ans in the Philippines. We find that CRI needs to be attuned to the differential vulnerabilities and capacities of its beneficiaries. This is particularly true for poor and vulnerable people, for whom issues of accessibility and affordability need to be managed, and human rights and pro-poor approaches need to be ensured. In this context, meso-insurance is a promising approach when it provides accessibility and affordability and promotes a pro-poor and human rights-based approach of risk transfer by: Properly identifying and involving target beneficiaries and duty-bearers by employing pro-poor and human rights principles. Employing measures to improve the financial literacy of target beneficiaries. Designing insurance models from the bottom up. Briefing Paper
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23661/bp19.2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23661/bp19.2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Pimentel, Vitor; Mariano, Diego; Cantão, Letícia Xavier Silva; Bastos, Luana Luiza; +4 AuthorsPimentel, Vitor; Mariano, Diego; Cantão, Letícia Xavier Silva; Bastos, Luana Luiza; Fischer, Pedro; Lima, Leonardo Henrique França de; Fassio, Alexandre Victor; de-Melo Minardi, Raquel Cardoso;Description of the four files: contacts.xlsx List of detected contacts for the three case studies pymol_files_case_study_1.zip Contains files in PDB format of the analyzed structures, and files in PML format used to display visualizations in the PyMOL tool for the case study 1: comparison between contacts of myoglobin against hemoglobin pymol_files_case_study_2.zip Contains files in PDB format of the analyzed structures, and files in PML format used to display visualizations in the PyMOL tool for the case study 2: comparison between contacts of RBDs of SARS-CoV-1 vs. SARS-CoV-2 both complexed with the cell receptor ACE2 pymol_files_case_study_3.zip Contains files in PDB format of the analyzed structures, and files in PML format used to display visualizations in the PyMOL tool for the case study 3: comparison between contacts of glucose-tolerant vs. non-tolerant β-glucosidases
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4046537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4046537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 19 Oct 2015Publisher:Dryad Authors: Ament, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; +2 AuthorsAment, Stephanie M. C.; De Groot, Jeanny J. A.; Maessen, José M. C.; Dirksen, Carmen D.; Van der Weijden, Trudy; Kleijnen, Jos;doi: 10.5061/dryad.cr020
Objectives: To evaluate (1) the state of the art in sustainability research and (2) the outcomes of professionals’ adherence to guideline recommendations in medical practice. Design: Systematic review. Data sources: Searches were conducted until August 2015 in MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and the Guidelines International Network (GIN) library. A snowball strategy, in which reference sections of other reviews and of included papers were searched, was used to identify additional papers. Eligibility criteria: Studies needed to be focused on sustainability and on professionals’ adherence to clinical practice guidelines in medical care. Studies had to include at least 2 measurements: 1 before (PRE) or immediately after implementation (EARLY POST) and 1 measurement longer than 1 year after active implementation (LATE POST). Results: The search retrieved 4219 items, of which 14 studies met the inclusion criteria, involving 18 sustainability evaluations. The mean timeframe between the end of active implementation and the sustainability evaluation was 2.6 years (minimum 1.5–maximum 7.0). The studies were heterogeneous with respect to their methodology. Sustainability was considered to be successful if performance in terms of professionals’ adherence was fully maintained in the late postimplementation phase. Long-term sustainability of professionals’ adherence was reported in 7 out of 18 evaluations, adherence was not sustained in 6 evaluations, 4 evaluations showed mixed sustainability results and in 1 evaluation it was unclear whether the professional adherence was sustained. Conclusions: (2) Professionals’ adherence to a clinical practice guideline in medical care decreased after more than 1 year after implementation in about half of the cases. (1) Owing to the limited number of studies, the absence of a uniform definition, the high risk of bias, and the mixed results of studies, no firm conclusion about the sustainability of professionals’ adherence to guidelines in medical practice can be drawn. Results Systematic review sustainabilityFor this review, 4219 items were retrieved and screened based on title and abstract, 185 studies were assessed based on full text reading and 14 studies were selected for analyses. This data file contains the endnote file with all items and the classification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cr020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Jan 2023Publisher:Dryad Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; Leach, Nicholas; Smith, Christopher J.; Gill-Wiehl, Annelise; Landesman, Katherine; Bailis, Robert;Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 16 Oct 2022Publisher:Dryad Authors: Brown, Gregory P.; Hudson, Cameron; Shine, Richard;Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.7m0cfxpz3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.7m0cfxpz3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gonzalez, Alan R.; Lin, Ting;{"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo A. Mathieu; B. Aubry; E. Chhim; M. Jobe; M. Arnaud;{"references": ["T Gopinathan, K P Arul Shri: Simulation of Recharging Battery of the\nPacemaker using Piezoelectric Crystal from the Pulse in Aorta, Thesis,\nDec 2011.", "H.W. Ko: US Patent 3456134A: Piezoelectric Energy Converter for\nElectronic Implants, 1969.", "A. Badel: R\u00e9cup\u00e9ration d'Energie et Contr\u00f4le Vibratoire par El\u00e9ments\nPi\u00e9zo\u00e9lectriques Suivant une Approche Non Lin\u00e9aire, Ph.D. Thesis,\nUniversit\u00e9 de Savoie, 2008.", "M. Deterre: Toward an Energy Harvester for Leadless Pacemakers,\nPh.D. Thesis, Paris-Sud Univ. 2013.", "N. Andrew: Redington,CardiacDept, Brompton Hospital, Fulham Road,\nLondon SW3 6HP, in press.", "R. White, G. Savage, M. Zdeblick: US Patent 7729768 B2: Implantable\nCardiac Motion Powered Piezoelectric Energy Source.", "S. Priya, D.J. Inman: Energy Harvesting Technologies.", "N. Bassiri-Gharb : Piezoelectric Mems: Materials and Devices,\nPiezoelectric and Acoustic Materials for Transducer Applications, A.\nSafari, E.K. Akdogan, eds., Springer US, 2008, pp. 413\u2013430.", "W. Clark, C. Mo : Energy Harvesting Technologies, Ch.16, pp.405-430,\nS. Priya, D.J. Inman eds., Springer, 2009.\n[10] M. Deterre, E. Lefeuvre, E. Dufour-Gergam : An Active Piezoelectric\nEnergy Extraction Method for Pressure Energy Harvesting, Smart\nMaterials and Structures, Vol.21(8), 085004, 2012.\n[11] M.A. Karami, D.J. Inman: Powering Pacemakers from Heartbeat\nVibrations Using Linear and Nonlinear Energy Harvesters, Appl. Phys.\nLett. 100, 042901 (2012), in press.\n[12] S.R Anton, H.A Sodano : A Review of Power Harvesting Using\nPiezoelectric Materials (2003\u20132006), Smart Materials and Structures,\nVol.16(3), R1, 2007."]} Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1112274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 79 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1112274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Authors: Yougang Bernadette; Robert, Wanda;{"references": ["BENAZZOU L. et al (2021), \u00ab Covid-19 : An unexpected lever for accelerating the transformation of organizations in Morocco \u00bb, International journal of management sciences. Vol.4, n\u00b02 (2021)", "ELWARDI K. et al (2021), \u00ab Management of the Covid19 crisis : Case of a Moroccan public hospital \u00bb,International journal of management sciences. Vol.4, n\u00b02 (2021)", "De Briey V. (2005), \u00ab Spotlight on microfinance in 2005 \u00bb, Regards Economique, n\u00b028, Mars, pp.", "CAMPION, A. (2003), \"Improving internal control. Practical guide for use by microfinance institutions \", Practical Guide n \u00b0 1, June.", "ALCHIAN A. (1969), \u00ab Corporate Management and Property Rights: Economic Policy and the Regulation of Corporate Securities \u00bb, (publishedby H. Manne, Washington D.C.), American Institute for Public Policy Research.", "DEMSETZ H. (1967), \"Towards a Theory of Property Rights\", American Economic Review, May, pp.347-359.", "FURUBOTN E. & PEJOVITCH S. (1972), \"Property Rights and Economic Theory: A Survey of Recent Literature\", Journal of Economic Literature, December", "ALESSI de L. (1983), \u00ab Property Rights, Transaction Costs and The X-efficiency \u00bb, American Economic Review, vol. 73, n\u00b0 1, March, p. 64-81", "AMANN, B., (1999), \u00ab The theory of property rights \u00bb, in Koenig G\u00e9rard (ed.), New Theories for Managing the Enterprise of the XXIst Century, Economica, Paris, 13-60"]} The end of decade 1990 is marked by the proliferation of microfinance institutions that constitute powerful instruments for fight against poverty and the reduction of unemployment. In the meanwhile, considering the ephemeral character of some of those institutions, the object of this study is to understand the elements that are at the basis of the life expectancy of microfinance institutions in Cameroun in covid 19 context. The literature shows that variables such as a system of internal control and financial objectives influence the longevity of microfinance institutions. The test of chisquare on 35 institutions of microfinance observed within the period of 2004-2020 in Cameroun enable to establish connexions among variables. The results obtained show that the survival of microfinance institutions in Cameroun depends on internal control systems the board of directors, the separation of functions of president and that of general manager, the frequency of meeting of the board of directors, the effective presence participation of the members of the board of directors to the meetings and the joint decision making by the boards of directors and the general management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7672459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7672459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1965Publisher:Zenodo Authors: A. K. Sen; (Miss) Kalyani Mitra;4-Anilinoquinolines have been prepared by cyclodehydration of \(\beta\)-anilinoacryloanilides with polyphosphoric acid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6507598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6507598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Zenodo Authors: Francis William S; Imtiaz Ahmed Choudhury; Ananda Kumar Eriki; A. John Rajan;Diesel Engines emit complex mixtures of inorganic and organic compounds in the form of both solid and vapour phase particles. Most of the particulates released are ultrafine nanoparticles which are detrimental to human health and can easily enter the body by respiration. The emissions standards on particulate matter release from diesel engines are constantly upgraded within the European Union and with future regulations based on the particles numbers released instead of merely mass, the need for effective aftertreatment devices will increase. Standard particulate filters in the form of wall flow filters can have problems with high soot accumulation, producing a large exhaust backpressure. A potential solution would be to combine the standard filter with a flow through filter to reduce the load on the wall flow filter. In this paper soot particle trapping has been simulated in different continuous flow filters of monolithic structure including the use of promoters, at laminar flow conditions. An Euler Lagrange model, the discrete phase model in Ansys used with user defined functions for forces acting on particles. A method to quickly screen trapping of 5 nm and 10 nm particles in different catalysts designs with tracers was also developed. Simulations of square duct monoliths with promoters show that the strength of the vortices produced are not enough to give a high amount of particle deposition on the catalyst walls. The smallest particles in the simulations, 5 and 10 nm particles were trapped to a higher extent, than larger particles up to 1000 nm, in all studied geometries with the predominant deposition mechanism being Brownian diffusion. The comparison of the different filters designed with a wall flow filter does show that the options for altering a design of a flow through filter, without imposing a too large pressure drop penalty are good. {"references": ["M.Votsmeier, T. Kreuzer, J. Gieshioff, Automobile Exhaust Control,\nUllmann-s Encyclopedia of Industrial Chemistry,\n", "Kalla http://www.dieselnet.com/standards/eu/hd.php.", "A.M.Hochhauser, Gasoline and Other Motor Fuels, Kirk-Othmer\nEncyclopedia of Chemical Technology. 2010-01-20,\n", "M.Zhen, S. Banerjee, Diesel oxidation catalyst and particulate filter\nmodelling in active Flow configurations, Applied Thermal\nEnmgineering 29 (2009) 3021-3035.", "J.Uchisawa, A. Obuchi, A. Ohi, T. Nanba, N. Nakayama, Activity of\ncatalysts supported on heat-resistant ceramic cloth for diesel soot\noxidation, Power Technology 180 (2008) 39-44.\n[10] W.A. Majewski, Diesel Oxidation Catalyst, www. Dieselnet.com. 2009.\n[11] Schaefer-Sindlingera, I. Lappasa, C.C. Vogta, et al, Efficient material\ndesign for diesel particulate filters, Topics in Catalysis Vols. 42-43,\n2007.\n[12] L. Andreassi, S. Cordiner, V. Mulone, M. Presti, A mixed numericalexperimental\nanalysis procedure for non-blocking metal supported soot\ntrap design. SAE 2002-01-2782), 2002.\n[13] W.A. Majewski, Flow-Through Filters, www. Dieselnet. Com, 2009.\n[14] B. Andersson, R. Andersson, L. Hakansson, et al, Computational Fluid\nDynamics for Chemical Enginers, fifth edition, Gothenburg, 2009.\n[15] M. Sommerfield, B.Wan Wachem, R. Oliemans, (eds), Best Practice\nGuidelines for CFD of Dispersed Multiphase Flows\n(ERCOFTAC/SIAMUF, Goteborg, 2008).\n[16] R. Bruck, P. Hirth, M. Reizig, Metal Supported Flow-Through\nParticulate Trap; a Non-Blocking Solution, SAE 2001-01-1950, 2001."]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1085228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 24 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1085228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Report 2018Publisher:German Development Institute / Deutsches Institut für Entwicklungspolitik (DIE) Authors: Matias, Denise Margaret; Fernández, Raúl; Hutfils, Marie-Lena; Winges, Maik;doi: 10.23661/bp19.2018
In the face of increasingly frequent extreme weather events, the need to manage climate risk becomes more urgent, especially for the most vulnerable countries and communities. With the aim of reducing vulnerability, climate risk transfer in the form of climate risk insurance (CRI) has been gaining attention in climate policy discussions. When properly designed, CRI acts as a safety net against climate change impacts by providing financial support after an extreme weather event. Two main types of insurance enable payouts: indemnity (traditional) insurance or predefined parameters (index-based) insurance. Individuals, groups, or even governments may take out policies with either type of insurance and receive payouts directly (insurer to beneficiary payout) or indirectly (insurer to aggregator to beneficiary payout). Direct insurance is usually implemented at the micro-level with individual policyholders. Indirect insurance is usually implemented through group contracts at the meso-level through risk aggregators and at the macro-level through the state. While promising, risk transfer in the form of CRI also has its share of challenges. Within the United Nations Framework Convention on Climate Change, the lack of accessibility and affordability of CRI for poor and vulnerable groups have been identified as barriers to uptake. In light of climate justice, asking the poor and climate-vulnerable groups - most of whom do not contribute substantially to anthropogenic climate change - to solely carry the financial burden of risk transfer is anything but just. Employing a human rights-based approach to CRI may ensure that the resilience of poor and climate-vulnerable groups is enhanced in a climate-just manner. Indigenous peoples are some of the poorest and most climate vulnerable groups. Often marginalised, they rarely have access to social protection. The strong communal relationship of indigenous peoples facilitates their participation in community-based organisations (CBOs). CBOs are a suitable vehicle for meso-insurance, in which risk is aggregated and an insurance policy belongs to a group. In this way, CBOs can facilitate service provision that would otherwise be beyond the reach of individuals. Conclusions of this briefing paper draw on a conceptual analysis of meso-insurance and the results of field research conducted in March 2018 with indigenous Palaw’ans in the Philippines. We find that CRI needs to be attuned to the differential vulnerabilities and capacities of its beneficiaries. This is particularly true for poor and vulnerable people, for whom issues of accessibility and affordability need to be managed, and human rights and pro-poor approaches need to be ensured. In this context, meso-insurance is a promising approach when it provides accessibility and affordability and promotes a pro-poor and human rights-based approach of risk transfer by: Properly identifying and involving target beneficiaries and duty-bearers by employing pro-poor and human rights principles. Employing measures to improve the financial literacy of target beneficiaries. Designing insurance models from the bottom up. Briefing Paper
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23661/bp19.2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23661/bp19.2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu