search
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,329 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • Restricted
  • Open Source
  • 15. Life on land
  • 6. Clean water
  • 14. Life underwater

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Marroccoli M.;
    Marroccoli M.
    ORCID
    Harvested from ORCID Public Data File

    Marroccoli M. in OpenAIRE
    Ibris N.; Telesca A.; orcid Tregambi C.;
    Tregambi C.
    ORCID
    Harvested from ORCID Public Data File

    Tregambi C. in OpenAIRE
    +5 Authors

    Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2022
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2022
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Marroccoli M.;
    Marroccoli M.
    ORCID
    Harvested from ORCID Public Data File

    Marroccoli M. in OpenAIRE
    Ibris N.; Telesca A.; orcid Tregambi C.;
    Tregambi C.
    ORCID
    Harvested from ORCID Public Data File

    Tregambi C. in OpenAIRE
    +5 Authors

    Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2022
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2022
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zhou, Y.;
    Zhou, Y.
    ORCID
    Harvested from ORCID Public Data File

    Zhou, Y. in OpenAIRE
    Ma, J.; orcid Zhang, Y.;
    Zhang, Y.
    ORCID
    Harvested from ORCID Public Data File

    Zhang, Y. in OpenAIRE
    Qin, B.; +6 Authors

    This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    161
    citations161
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zhou, Y.;
    Zhou, Y.
    ORCID
    Harvested from ORCID Public Data File

    Zhou, Y. in OpenAIRE
    Ma, J.; orcid Zhang, Y.;
    Zhang, Y.
    ORCID
    Harvested from ORCID Public Data File

    Zhang, Y. in OpenAIRE
    Qin, B.; +6 Authors

    This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    161
    citations161
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Lenka Krupková;
    Lenka Krupková
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Lenka Krupková in OpenAIRE
    orcid Irena Marková;
    Irena Marková
    ORCID
    Harvested from ORCID Public Data File

    Irena Marková in OpenAIRE
    Kateřina Havránková; Radek Pokorný; +5 Authors

    Radiation use efficiency values estimation based on the biomass increment (one approach) and on NPP from eddy covariance (two approaches) estimation of NPP brings the values of 0.13, 0.40, and 0.47 g (C) MJ −1 , respectively. The productivity of terrestrial ecosystems is primarily reliant on the absorption of solar radiation energy and its conversion into biomass. Monteith (1977) first introduced the concept of radiation use efficiency (RUE), which expresses the effectiveness of a plant stand to use solar radiation for the formation of new biomass and to maintain existing biomass. The presented paper uses a long-term, decadal, time series of biomass data, which is based on forest inventory data and an allometric relation, and on the application of eddy covariance (EC) estimation of Net Primary Production (NPP). These approaches provide different values of light use efficiency (LUE). LUE is based on direct carbon exchange estimation, LUE i , which denotes instantaneous efficiency based on the relationship between the daily sum of incident global radiation (GR i ) and NPP and LUES, calculated as the ratio between the sum of NPP and the sum of GR i per growing season. RUE is based on direct yearly biomass increment expressed in carbon units (carbon = 0.5 × biomass) divided by the sum of GR i per year. The obtained values amount to 0.13, 0.40, and 0.47 g(C) MJ−1 for RUE, LUES, and LUE i , respectively. The higher value of LUE i reflects a direct relation with the efficiency of photosynthetic carbon pumping. In contrast, the RUE value, based on biomass inventories, is the result of woody mass formation that is caused by several mutually related physiological processes and “wastages” of radiation utilization.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trees
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trees
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Lenka Krupková;
    Lenka Krupková
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Lenka Krupková in OpenAIRE
    orcid Irena Marková;
    Irena Marková
    ORCID
    Harvested from ORCID Public Data File

    Irena Marková in OpenAIRE
    Kateřina Havránková; Radek Pokorný; +5 Authors

    Radiation use efficiency values estimation based on the biomass increment (one approach) and on NPP from eddy covariance (two approaches) estimation of NPP brings the values of 0.13, 0.40, and 0.47 g (C) MJ −1 , respectively. The productivity of terrestrial ecosystems is primarily reliant on the absorption of solar radiation energy and its conversion into biomass. Monteith (1977) first introduced the concept of radiation use efficiency (RUE), which expresses the effectiveness of a plant stand to use solar radiation for the formation of new biomass and to maintain existing biomass. The presented paper uses a long-term, decadal, time series of biomass data, which is based on forest inventory data and an allometric relation, and on the application of eddy covariance (EC) estimation of Net Primary Production (NPP). These approaches provide different values of light use efficiency (LUE). LUE is based on direct carbon exchange estimation, LUE i , which denotes instantaneous efficiency based on the relationship between the daily sum of incident global radiation (GR i ) and NPP and LUES, calculated as the ratio between the sum of NPP and the sum of GR i per growing season. RUE is based on direct yearly biomass increment expressed in carbon units (carbon = 0.5 × biomass) divided by the sum of GR i per year. The obtained values amount to 0.13, 0.40, and 0.47 g(C) MJ−1 for RUE, LUES, and LUE i , respectively. The higher value of LUE i reflects a direct relation with the efficiency of photosynthetic carbon pumping. In contrast, the RUE value, based on biomass inventories, is the result of woody mass formation that is caused by several mutually related physiological processes and “wastages” of radiation utilization.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trees
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trees
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Paolo S. Calabrò;
    Paolo S. Calabrò
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Paolo S. Calabrò in OpenAIRE
    orcid Filippo Fazzino;
    Filippo Fazzino
    ORCID
    Harvested from ORCID Public Data File

    Filippo Fazzino in OpenAIRE
    orcid Adele Folino;
    Adele Folino
    ORCID
    Harvested from ORCID Public Data File

    Adele Folino in OpenAIRE
    orcid Silvia Scibetta;
    Silvia Scibetta
    ORCID
    Harvested from ORCID Public Data File

    Silvia Scibetta in OpenAIRE
    +1 Authors

    Abstract Orange Peel Waste (OPW) is a widely produced residue whose management is complicated by its physical and chemical properties. Anaerobic digestion (AD), which is commonly used for the treatment and exploitation of many biodegradable wastes, is inefficient on OPW due to the presence of essential oils (mainly d -Limonene) as well as the low pH, which cause the process to be unstable. Here we explore the effect of alkaline pre-treatment of OPW and of the addition of granular activated carbon (GAC) and Zero Valent Iron (ZVI) in improving AD in two semi-continuous reactors at a laboratory scale. The addition and pre-treatment of ZVI/GAC were shown to help process stability up to a loading of 3 kgVS·m−3·d−1 and to increase methane production even at a sub-optimal pH. The investigation of the bacterial community, by high-throughput sequencing, has also increased our insight on their involvement in AD in the presence of ZVI, including its biotic oxidation. In addition, direct interspecies electron transfer was shown to play a role in the reactor supplemented with ZVI.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    48
    citations48
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Paolo S. Calabrò;
    Paolo S. Calabrò
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Paolo S. Calabrò in OpenAIRE
    orcid Filippo Fazzino;
    Filippo Fazzino
    ORCID
    Harvested from ORCID Public Data File

    Filippo Fazzino in OpenAIRE
    orcid Adele Folino;
    Adele Folino
    ORCID
    Harvested from ORCID Public Data File

    Adele Folino in OpenAIRE
    orcid Silvia Scibetta;
    Silvia Scibetta
    ORCID
    Harvested from ORCID Public Data File

    Silvia Scibetta in OpenAIRE
    +1 Authors

    Abstract Orange Peel Waste (OPW) is a widely produced residue whose management is complicated by its physical and chemical properties. Anaerobic digestion (AD), which is commonly used for the treatment and exploitation of many biodegradable wastes, is inefficient on OPW due to the presence of essential oils (mainly d -Limonene) as well as the low pH, which cause the process to be unstable. Here we explore the effect of alkaline pre-treatment of OPW and of the addition of granular activated carbon (GAC) and Zero Valent Iron (ZVI) in improving AD in two semi-continuous reactors at a laboratory scale. The addition and pre-treatment of ZVI/GAC were shown to help process stability up to a loading of 3 kgVS·m−3·d−1 and to increase methane production even at a sub-optimal pH. The investigation of the bacterial community, by high-throughput sequencing, has also increased our insight on their involvement in AD in the presence of ZVI, including its biotic oxidation. In addition, direct interspecies electron transfer was shown to play a role in the reactor supplemented with ZVI.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    48
    citations48
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Evelina Volpe; Loredana Antronico; Francesca Ardizzone; Roberto Coscarelli; +2 Authors

    Earth observation (EO) data are useful tools to analyse geomorphological processes, among which slow-moving landslides triggered by rainfall. EO data are also used to evaluate climate change and to assess its impact on geomorphological processes and geo-hydrological phenomena. The latter is the topic of the Project OT4Clima (Innovative Earth Observation technologies to study Climate Change and its impact on the environment) joined by CNR-IRPI within a consortium that includes other CNR institutes, universities and private companies. The OT4CLIMA project moves from the awareness that the impacts of climate change on the environment need to be better observed, understood, and modelled, especially at a regional scale, in order to put in place appropriate and effective risk mitigation strategies. Within the project, the CNR-IRPI group works on the development of rigorous methods and procedures for evaluating the impact of climate and its change on landslides, in particular on those characterized by a slow cinematic, at a regional scale. The test site is represented by four catchments located in the Basilicata region, southern Italy, namely the basins of the Bradano, Basento, Agri, and Sinni rivers. Long-term rainfall series gathered from 22 rain gauges located in the four catchments are analysed to evaluate the presence of temporal trends. To this aim, non-parametric and statistical tests are applied to the series. Historical landslide information is gathered from the analysis of the IFFI (Inventario dei Fenomeni Franosi in Italia) database, the Idrogeo platform (https://idrogeo.isprambiente.it/app/) and the AVI (Aree Vulnerate in Italia) catalogue. Only some types of landslide movements are considered, namely rotational-translational slides, slow slides/flows, complex movements. Moreover, Copernicus Sentinel-1 images are employed to detect the spatial and temporal distribution of slow earth surface deformations. The obtained results are used for checking the completeness of the landslide inventories. More in detail, the deformation maps of the test site are obtained by means of the application of the SBAS (Small BAseline Subset) technique to three datasets of Sentinel-1 images: t146 ascending orbit and t51 and t124 descending orbits, for the period 2015-2020. Then, a comparative analysis of rainfall data with displacement series is carried out with the aim of identifying clusters of satellite measurements with homogeneous behaviour likely correlated to variations in the rainfall regime. In particular, only the points with a mean velocity in the observation higher than 0.1 cm/year are considered to be moving. Moreover, only the displacement series of points located in areas mapped as landslides - as for the historical inventories - and sited within the influence regions of each rain gauge in the study area are analysed. A 10-km circular buffer centred in the stations are used to define the influence region of each station. The displacement series are analysed and compared to the rainfall series to search for correlations and to evaluate the effects of climate drivers on slow moving landslides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Evelina Volpe; Loredana Antronico; Francesca Ardizzone; Roberto Coscarelli; +2 Authors

    Earth observation (EO) data are useful tools to analyse geomorphological processes, among which slow-moving landslides triggered by rainfall. EO data are also used to evaluate climate change and to assess its impact on geomorphological processes and geo-hydrological phenomena. The latter is the topic of the Project OT4Clima (Innovative Earth Observation technologies to study Climate Change and its impact on the environment) joined by CNR-IRPI within a consortium that includes other CNR institutes, universities and private companies. The OT4CLIMA project moves from the awareness that the impacts of climate change on the environment need to be better observed, understood, and modelled, especially at a regional scale, in order to put in place appropriate and effective risk mitigation strategies. Within the project, the CNR-IRPI group works on the development of rigorous methods and procedures for evaluating the impact of climate and its change on landslides, in particular on those characterized by a slow cinematic, at a regional scale. The test site is represented by four catchments located in the Basilicata region, southern Italy, namely the basins of the Bradano, Basento, Agri, and Sinni rivers. Long-term rainfall series gathered from 22 rain gauges located in the four catchments are analysed to evaluate the presence of temporal trends. To this aim, non-parametric and statistical tests are applied to the series. Historical landslide information is gathered from the analysis of the IFFI (Inventario dei Fenomeni Franosi in Italia) database, the Idrogeo platform (https://idrogeo.isprambiente.it/app/) and the AVI (Aree Vulnerate in Italia) catalogue. Only some types of landslide movements are considered, namely rotational-translational slides, slow slides/flows, complex movements. Moreover, Copernicus Sentinel-1 images are employed to detect the spatial and temporal distribution of slow earth surface deformations. The obtained results are used for checking the completeness of the landslide inventories. More in detail, the deformation maps of the test site are obtained by means of the application of the SBAS (Small BAseline Subset) technique to three datasets of Sentinel-1 images: t146 ascending orbit and t51 and t124 descending orbits, for the period 2015-2020. Then, a comparative analysis of rainfall data with displacement series is carried out with the aim of identifying clusters of satellite measurements with homogeneous behaviour likely correlated to variations in the rainfall regime. In particular, only the points with a mean velocity in the observation higher than 0.1 cm/year are considered to be moving. Moreover, only the displacement series of points located in areas mapped as landslides - as for the historical inventories - and sited within the influence regions of each rain gauge in the study area are analysed. A 10-km circular buffer centred in the stations are used to define the influence region of each station. The displacement series are analysed and compared to the rainfall series to search for correlations and to evaluate the effects of climate drivers on slow moving landslides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Elfadaly Abdelaziz;
    Elfadaly Abdelaziz
    ORCID
    Harvested from ORCID Public Data File

    Elfadaly Abdelaziz in OpenAIRE
    orcid Abutaleb Khaled;
    Abutaleb Khaled
    ORCID
    Harvested from ORCID Public Data File

    Abutaleb Khaled in OpenAIRE
    orcid Naguib Doaa M;
    Naguib Doaa M
    ORCID
    Harvested from ORCID Public Data File

    Naguib Doaa M in OpenAIRE
    orcid Mostafa Wael;
    Mostafa Wael
    ORCID
    Harvested from ORCID Public Data File

    Mostafa Wael in OpenAIRE
    +4 Authors

    AbstractClimate change effects along with anthropogenic activities present the main factors that threaten the existence of heritage sites across the north Nile Delta of Egypt close to the coastline of the Mediterranean Sea. Observing the changes in the landscape close to the archaeological sites is an important issue for decision‐makers in terms of reducing the negative impact of natural events and human activities. The coastal heritage sites are becoming strongly threatened by the rising sea level phenomena that will happen due to global warming. Focusing on the distribution of the archaeological sites, this study aims to detect the areas at risk of shoreline erosion or accretion in the northern shoreline of the Nile Delta. In this study, the changes in the northern shoreline of the Nile Delta were observed and calculated during the last hundred years based on the integration between the old topographic maps from surveys in 1900, 1925 and 1945, optical satellite images captured by Landsat in 1972, 1986 and 2000; Sentinel2 2021; and the Radar SRTM data. The results of this study showed that the changes were enormous with a great shoreline erosion process over the last 121 years recorded along the shoreline in the periods between 1900–1925, 1925–1945, 1945–1972, 1972–1986, 1986–2000 and 2000–2021. The areas eroded were about 5.3, 4.7, 5.6, 8.9, 2.5 and 5.4 km2, respectively. Such negative movements caused the loss of two heritage sites, and the expected changes will lead to the loss of additional heritage sites in the next 500 years. Furthermore, a model was suggested for protecting the coastal heritage sites threatened by the risk of submergence. This study can help the decision‐makers to detect the coastal archaeological sites at risk and create innovative solutions for protecting these irreplaceable heritage sites.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2023
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Archaeological Prospection
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2023
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Archaeological Prospection
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Elfadaly Abdelaziz;
    Elfadaly Abdelaziz
    ORCID
    Harvested from ORCID Public Data File

    Elfadaly Abdelaziz in OpenAIRE
    orcid Abutaleb Khaled;
    Abutaleb Khaled
    ORCID
    Harvested from ORCID Public Data File

    Abutaleb Khaled in OpenAIRE
    orcid Naguib Doaa M;
    Naguib Doaa M
    ORCID
    Harvested from ORCID Public Data File

    Naguib Doaa M in OpenAIRE
    orcid Mostafa Wael;
    Mostafa Wael
    ORCID
    Harvested from ORCID Public Data File

    Mostafa Wael in OpenAIRE
    +4 Authors

    AbstractClimate change effects along with anthropogenic activities present the main factors that threaten the existence of heritage sites across the north Nile Delta of Egypt close to the coastline of the Mediterranean Sea. Observing the changes in the landscape close to the archaeological sites is an important issue for decision‐makers in terms of reducing the negative impact of natural events and human activities. The coastal heritage sites are becoming strongly threatened by the rising sea level phenomena that will happen due to global warming. Focusing on the distribution of the archaeological sites, this study aims to detect the areas at risk of shoreline erosion or accretion in the northern shoreline of the Nile Delta. In this study, the changes in the northern shoreline of the Nile Delta were observed and calculated during the last hundred years based on the integration between the old topographic maps from surveys in 1900, 1925 and 1945, optical satellite images captured by Landsat in 1972, 1986 and 2000; Sentinel2 2021; and the Radar SRTM data. The results of this study showed that the changes were enormous with a great shoreline erosion process over the last 121 years recorded along the shoreline in the periods between 1900–1925, 1925–1945, 1945–1972, 1972–1986, 1986–2000 and 2000–2021. The areas eroded were about 5.3, 4.7, 5.6, 8.9, 2.5 and 5.4 km2, respectively. Such negative movements caused the loss of two heritage sites, and the expected changes will lead to the loss of additional heritage sites in the next 500 years. Furthermore, a model was suggested for protecting the coastal heritage sites threatened by the risk of submergence. This study can help the decision‐makers to detect the coastal archaeological sites at risk and create innovative solutions for protecting these irreplaceable heritage sites.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2023
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Archaeological Prospection
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2023
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Archaeological Prospection
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid A M De Girolamo;
    A M De Girolamo
    ORCID
    Harvested from ORCID Public Data File

    A M De Girolamo in OpenAIRE
    F Bouraoui; orcid A Buffagni;
    A Buffagni
    ORCID
    Harvested from ORCID Public Data File

    A Buffagni in OpenAIRE
    orcid G Pappagallo;
    G Pappagallo
    ORCID
    Harvested from ORCID Public Data File

    G Pappagallo in OpenAIRE
    +1 Authors

    AbstractThe potential impacts of future climate scenarios on water balance and flow regime are presented and discussed for a temporary river system in southern Italy. Different climate projections for the future (2030–2059) and the recent conditions (1980–2009) were investigated. A hydrological model (Soil and Water Assessment Tool) was used to simulate water balance at the basin scale and streamflow in a number of river sections under various climate change scenarios, based on different combinations of global and regional models (global circulation models and regional climate models). The impact on water balance components was quantified at the basin and subbasin levels as deviation from the baseline (1980–2009), and the flow regime alteration under changing climate was estimated using a number of hydrological indicators. An increase in mean temperature for all months between 0.5–2.4 °C and a reduction in precipitation (by 4–7%) was predicted for the future. As a consequence, a decline of blue water (7–18%) and total water yield (11–28%) was estimated. Although the river type classification remains unvaried, the flow regime distinctly moves towards drier conditions and the divergence from the current status increases in future scenarios, especially for those reaches classified as I‐D (ie, intermittent‐dry) and E (ephemeral). Hydrological indicators showed a decrease in both high flow and low flow magnitudes for various time durations, an extension of the dry season and an exacerbation of extreme low flow conditions. A reduction of snowfall in the mountainous part of the basin and an increase in potential evapotranspiration was also estimated (4–4.4%). Finally, the paper analyses the implications of the climate change for river ecosystems and for River Basin Management Planning. The defined quantitative estimates of water balance alteration could support the identification of priorities that should be addressed in upcoming years to set water‐saving actions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    River Research and Applications
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2017
    Data sources: IRIS Cnr
    addClaim
    53
    citations53
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      River Research and Applications
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2017
      Data sources: IRIS Cnr
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid A M De Girolamo;
    A M De Girolamo
    ORCID
    Harvested from ORCID Public Data File

    A M De Girolamo in OpenAIRE
    F Bouraoui; orcid A Buffagni;
    A Buffagni
    ORCID
    Harvested from ORCID Public Data File

    A Buffagni in OpenAIRE
    orcid G Pappagallo;
    G Pappagallo
    ORCID
    Harvested from ORCID Public Data File

    G Pappagallo in OpenAIRE
    +1 Authors

    AbstractThe potential impacts of future climate scenarios on water balance and flow regime are presented and discussed for a temporary river system in southern Italy. Different climate projections for the future (2030–2059) and the recent conditions (1980–2009) were investigated. A hydrological model (Soil and Water Assessment Tool) was used to simulate water balance at the basin scale and streamflow in a number of river sections under various climate change scenarios, based on different combinations of global and regional models (global circulation models and regional climate models). The impact on water balance components was quantified at the basin and subbasin levels as deviation from the baseline (1980–2009), and the flow regime alteration under changing climate was estimated using a number of hydrological indicators. An increase in mean temperature for all months between 0.5–2.4 °C and a reduction in precipitation (by 4–7%) was predicted for the future. As a consequence, a decline of blue water (7–18%) and total water yield (11–28%) was estimated. Although the river type classification remains unvaried, the flow regime distinctly moves towards drier conditions and the divergence from the current status increases in future scenarios, especially for those reaches classified as I‐D (ie, intermittent‐dry) and E (ephemeral). Hydrological indicators showed a decrease in both high flow and low flow magnitudes for various time durations, an extension of the dry season and an exacerbation of extreme low flow conditions. A reduction of snowfall in the mountainous part of the basin and an increase in potential evapotranspiration was also estimated (4–4.4%). Finally, the paper analyses the implications of the climate change for river ecosystems and for River Basin Management Planning. The defined quantitative estimates of water balance alteration could support the identification of priorities that should be addressed in upcoming years to set water‐saving actions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    River Research and Applications
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2017
    Data sources: IRIS Cnr
    addClaim
    53
    citations53
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      River Research and Applications
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2017
      Data sources: IRIS Cnr
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xin Xin Wang; Xin Xin Wang; Xin Xin Wang; orcid bw Thomas W. Kuyper;
    Thomas W. Kuyper
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Thomas W. Kuyper in OpenAIRE
    +3 Authors

    Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mycorrhizaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2019
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Other literature type . 2019
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mycorrhiza
    Article . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Mycorrhiza
    Article . 2019
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mycorrhizaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2019
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Other literature type . 2019
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mycorrhiza
      Article . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Mycorrhiza
      Article . 2019
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xin Xin Wang; Xin Xin Wang; Xin Xin Wang; orcid bw Thomas W. Kuyper;
    Thomas W. Kuyper
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Thomas W. Kuyper in OpenAIRE
    +3 Authors

    Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mycorrhizaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2019
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Other literature type . 2019
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mycorrhiza
    Article . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Mycorrhiza
    Article . 2019
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mycorrhizaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2019
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Other literature type . 2019
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mycorrhiza
      Article . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Mycorrhiza
      Article . 2019
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Majidi Nezhad M.; Heydari A.; orcid bw Groppi D.;
    Groppi D.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Groppi D. in OpenAIRE
    orcid Cumo F.;
    Cumo F.
    ORCID
    Harvested from ORCID Public Data File

    Cumo F. in OpenAIRE
    +1 Authors

    Abstract Mediterranean islands have the advantage of favourable climatic conditions to use different marine renewable energy sources. Remote sensing can provide data to determine wind energy production potential and observational activity to identify, assess and detect suitable points in large marine areas. In this paper, a new combined model has been developed to integrate wind speed assessment, mapping and forecasting using Sentinel 1 satellite data through images processing and Adaptive Neuro-Fuzzy Inference System and the Bat algorithm. Synthetic Aperture Radar (SAR) satellite images from the Sentinel 1 satellite have been used in order to detect offshore and nearshore wind potential. Particularly, Sentinel 1 images have been analysed by means of the SNAP software. Then, to extract data about wind speed and direction, a GIS software for mapping the wind climate has been used. This new methodology has been applied to the North-Central coasts of Sardinia Island and then focused on six main small islands of La Maddalena archipelago. Furthermore, ten Hot Spots (HSs) have been identified as interesting because of their high-energy potential and the possibility to be considered as sites for future implementation of Wind Turbine Generators (WTGs). Finally, the ten identified HS have been used as input data to train and test the proposed forecast model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    39
    citations39
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Majidi Nezhad M.; Heydari A.; orcid bw Groppi D.;
    Groppi D.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Groppi D. in OpenAIRE
    orcid Cumo F.;
    Cumo F.
    ORCID
    Harvested from ORCID Public Data File

    Cumo F. in OpenAIRE
    +1 Authors

    Abstract Mediterranean islands have the advantage of favourable climatic conditions to use different marine renewable energy sources. Remote sensing can provide data to determine wind energy production potential and observational activity to identify, assess and detect suitable points in large marine areas. In this paper, a new combined model has been developed to integrate wind speed assessment, mapping and forecasting using Sentinel 1 satellite data through images processing and Adaptive Neuro-Fuzzy Inference System and the Bat algorithm. Synthetic Aperture Radar (SAR) satellite images from the Sentinel 1 satellite have been used in order to detect offshore and nearshore wind potential. Particularly, Sentinel 1 images have been analysed by means of the SNAP software. Then, to extract data about wind speed and direction, a GIS software for mapping the wind climate has been used. This new methodology has been applied to the North-Central coasts of Sardinia Island and then focused on six main small islands of La Maddalena archipelago. Furthermore, ten Hot Spots (HSs) have been identified as interesting because of their high-energy potential and the possibility to be considered as sites for future implementation of Wind Turbine Generators (WTGs). Finally, the ten identified HS have been used as input data to train and test the proposed forecast model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    39
    citations39
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. Palomba; G.E. Dino; S. Vasta; A. Frazzica; +2 Authors

    The aim of the joint activity between CNR ITAE and University of Malta, funded in the framework of a bilateral agreement is the preliminary study of the possible application of thermally-activated technologies for the refrigeration of fish on-board of fishing vessels, with particular attention to the Mediterranean area. In such a context, the two partners, given their expertise in the adsorption and absorption cooling technologies, dedicated the first year of the joint project on several activities needed to define possible integration solutions on-board. The following report is then organized as follows: - Section 3 reports an analysis of the state-of-the-art concerning existing refrigeration systems currently employed in the fishing vessels' application as well as innovative activities recently performed on the possible integration of thermally-driven technologies for the refrigeration. - Section 4 focuses on the definition of possible integration between the waste heat recovered from the engines of the fishing vessel and the sorption technology for refrigeration. This analysis takes into account different possible applications, in terms of refrigeration temperatures as well as capacities. Furthermore, different possible waste heat streams at different temperature levels are investigated. - Section 5 identifies the typical working boundary conditions under which the fishing vessel operates, in terms of cooling demand, also considering different climatic zones (i.e. different geographical areas in which the vessel operates) and vessels' typology. - Section 6 investigates possible working pairs, both for adsorption and absorption technologies, which are promising for the given boundary conditions in Section 5. This activity is needed to set the operational limits that each technology and working pair cannot overcome. - Section 7 reports the calculations performed for each working pair and operating conditions, both taking into account thermodynamic constraints as well as analysing literature results on different prototypes realized and tested. - Section 8 introduces a dynamic model, implemented in TRNSYS environment, of an absorption refrigerator, which was validated and will be used in the following activities to investigate the defined schematics in Section 4. - Section 9 defines the Key Performance Indicators (KPIs) that will be used in the following activities to compare the achievable results of the different configurations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Report . 2019
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Report . 2019
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. Palomba; G.E. Dino; S. Vasta; A. Frazzica; +2 Authors

    The aim of the joint activity between CNR ITAE and University of Malta, funded in the framework of a bilateral agreement is the preliminary study of the possible application of thermally-activated technologies for the refrigeration of fish on-board of fishing vessels, with particular attention to the Mediterranean area. In such a context, the two partners, given their expertise in the adsorption and absorption cooling technologies, dedicated the first year of the joint project on several activities needed to define possible integration solutions on-board. The following report is then organized as follows: - Section 3 reports an analysis of the state-of-the-art concerning existing refrigeration systems currently employed in the fishing vessels' application as well as innovative activities recently performed on the possible integration of thermally-driven technologies for the refrigeration. - Section 4 focuses on the definition of possible integration between the waste heat recovered from the engines of the fishing vessel and the sorption technology for refrigeration. This analysis takes into account different possible applications, in terms of refrigeration temperatures as well as capacities. Furthermore, different possible waste heat streams at different temperature levels are investigated. - Section 5 identifies the typical working boundary conditions under which the fishing vessel operates, in terms of cooling demand, also considering different climatic zones (i.e. different geographical areas in which the vessel operates) and vessels' typology. - Section 6 investigates possible working pairs, both for adsorption and absorption technologies, which are promising for the given boundary conditions in Section 5. This activity is needed to set the operational limits that each technology and working pair cannot overcome. - Section 7 reports the calculations performed for each working pair and operating conditions, both taking into account thermodynamic constraints as well as analysing literature results on different prototypes realized and tested. - Section 8 introduces a dynamic model, implemented in TRNSYS environment, of an absorption refrigerator, which was validated and will be used in the following activities to investigate the defined schematics in Section 4. - Section 9 defines the Key Performance Indicators (KPIs) that will be used in the following activities to compare the achievable results of the different configurations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Report . 2019
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Report . 2019
      Data sources: CNR ExploRA
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph