
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands

handle: 11573/1421944 , 2067/49247
Abstract Mediterranean islands have the advantage of favourable climatic conditions to use different marine renewable energy sources. Remote sensing can provide data to determine wind energy production potential and observational activity to identify, assess and detect suitable points in large marine areas. In this paper, a new combined model has been developed to integrate wind speed assessment, mapping and forecasting using Sentinel 1 satellite data through images processing and Adaptive Neuro-Fuzzy Inference System and the Bat algorithm. Synthetic Aperture Radar (SAR) satellite images from the Sentinel 1 satellite have been used in order to detect offshore and nearshore wind potential. Particularly, Sentinel 1 images have been analysed by means of the SNAP software. Then, to extract data about wind speed and direction, a GIS software for mapping the wind climate has been used. This new methodology has been applied to the North-Central coasts of Sardinia Island and then focused on six main small islands of La Maddalena archipelago. Furthermore, ten Hot Spots (HSs) have been identified as interesting because of their high-energy potential and the possibility to be considered as sites for future implementation of Wind Turbine Generators (WTGs). Finally, the ten identified HS have been used as input data to train and test the proposed forecast model.
- Roma Tre University Italy
- Sapienza University of Rome Italy
- Tuscia University Italy
ANFIS; Bat algorithm; GIS software; marine energy resource; offshore and nearshore wind; Sentinel-1; SNAP software
ANFIS; Bat algorithm; GIS software; marine energy resource; offshore and nearshore wind; Sentinel-1; SNAP software
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
