- home
- Search
- Energy Research
- 2021-2025
- CNR ExploRA
- Energy Research
- 2021-2025
- CNR ExploRA
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Marco Dettori; Carla Cesaraccio; Pierpaolo Duce; Valentina Mereu;With an approach combining crop modelling and biotechnology to assess the performance of three durum wheat cultivars (Creso, Duilio, Simeto) in a climate change context, weather and agronomic datasets over the period 1973–2004 from two sites, Benatzu and Ussana (Southern Sardinia, Itay), were used and the model responses were interpreted considering the role of DREB genes in the genotype performance with a focus on drought conditions. The CERES-Wheat crop model was calibrated and validated for grain yield, earliness and kernel weight. Forty-eight synthetic scenarios were used: 6 scenarios with increasing maximum air temperature; 6 scenarios with decreasing rainfall; 36 scenarios combining increasing temperature and decreasing rainfall. The simulated effects on yields, anthesis and kernel weights resulted in yield reduction, increasing kernel weight, and shortened growth duration in both sites. Creso (late cultivar) was the most sensitive to simulated climate conditions. Simeto and Duilio (early cultivars) showed lower simulated yield reductions and a larger anticipation of anthesis date. Observed data showed the same responses for the three cultivars in both sites. The CERES-Wheat model proved to be effective in representing reality and can be used in crop breeding programs with a molecular approach aiming at developing molecular markers for the resistance to drought stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyPaola Brachi; Piero Bareschino; Erasmo Mancusi; Francesco Pepe; Massimo Urciuolo; Giovanna Ruoppolo;This work numerically analyzes an innovative process layout considering a torrefaction processes followed by chemical looping combustion of biomass waste, solar hydrogen, and carbon methanation. System performances were evaluated by considering several agro-industrial residues (i.e., sugar beet pulp from sugar production, grape marc from winemaking and olive pits from olive oil production) as fuels, CuO supported on zirconia as oxygen carrier, and Ni supported on alumina as methanation catalyst. The torrefaction pre-treatment was proposed for upgrading the properties, namely heating values, moisture content as well as hydrophobicity, and storability, of the selected biomasses. To this aim, experimental runs were performed at 300 °C and 30 min in a lab-scale fixed bed reactor under an inert atmosphere of nitrogen. The study was complemented with an extensive investigation on fuel properties (i.e., ultimate analysis, proximate analysis, calorific values determination) of both the untreated and the torrefied samples, which provides useful input data for modelling their conversion processes. By considering that only electric energy from renewable sources is used, the capability of the proposed process to be used as an energy storage system was eventually assessed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::1779eeabcc8176fe4da2b80a4f339ff6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::1779eeabcc8176fe4da2b80a4f339ff6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Italy, France, South AfricaPublisher:Wiley Alessia Losa; Juan Vorster; Eleonora Cominelli; Francesca Sparvoli; Dario Paolo; T. Sala; Marika Ferrari; Marina Carbonaro; Stefania Marconi; Emanuela Camilli; Emmanuelle Reboul; Boaz Waswa; Béatrice Ekesa; F. J. L. Aragão; K. Kunert;handle: 10568/127131
AbstractGlobal climate change, causing large parts of the world to become drier with longer drought periods, severely affects production of common beans (Phaseolus vulgaris L.). The bean is worldwide the most produced and consumed food grain legume in the human diet. In common beans, adapted to moderate climates, exposure to drought/heat stress not only results in significant reduction of bean yield but also the nutritional value. This review explores the contribution of common beans to food and nutrient security as well as health. Also discussed is the existing knowledge of the impact of drought/heat stress, associated with a changing climate, specifically on iron (Fe) and phytic acid (PA) that are both among the most important mineral and anti‐nutritional compounds found in common beans. Further discussed is how the application of modern “omics” tools contributes in common beans to higher drought/heat tolerance as well as to higher Fe and reduced PA content. Finally, possible future actions are discussed to develop new common bean varieties with both improved drought/heat tolerance and higher mineral (Fe) content.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127131Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127131Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Hindawi Limited Authors: Yagmur Atak; C. Ozgur Colpan; Adolfo Iulianelli;doi: 10.1002/er.7186
The most widely used process for hydrogen production is steam methane reforming. It can be carried out using a membrane reactor in which simultaneous hydrogen production and purification occur. Mathematical modeling of these reactors plays a key role in the selection of the design and operating parameters that yield high performance for the reactor. This review study discusses, synthesizes, and compares different mathematical modeling studies on the packed bed membrane reactors for hydrogen production from methane found in the literature. Different approaches used in these modeling studies for the hydrogen permeation steps, reaction kinetic expressions, phases involved (pseudo-homogeneous and heterogeneous), and spatial dimensions (one, two, and three dimensional) are given.
CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Fabrizio Reale;doi: 10.3390/en15082914
The use of hydrogen in small scale gas turbines is currently limited by several issues. Blending hydrogen with methane or other gaseous fuels can be considered a low medium-term viable solution, with the goal of reducing greenhouse gas emissions. In fact, only small amounts can be mixed with methane in premixed combustors, due to the risk of flashback. The aim of this article is to investigate the injection of small quantities of steam as a method of increasing the maximum permissible hydrogen content in a mixture with methane. The proposed approach involves introducing the steam directly into the combustion chamber into the main fuel feeding system of a Turbec T100. The study is carried out by means of CFD analysis of the combustion process. A thermodynamic analysis of the energy system is used to determine boundary conditions. The combustion chamber is discretized using a three-dimensional mesh consisting of 4.7 million nodes and the RANS RSM model is used to simulate the effects of turbulence. The results show that the addition of steam may triple the permissible percentage of hydrogen in the mixture for the considered MGT, passing from 10% to over 30% by volume, also leading to a reduction in NOx emissions without a significant variation in CO emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Mohamed K. Abdel-Fattah; Elsayed Said Mohamed; Enas M. Wagdi; Sahar A. Shahin; Ali A. Aldosari; Rosa Lasaponara; Manal A. Alnaimy;doi: 10.3390/su13041824
Soil quality assessment is the first step towards precision farming and agricultural management. In the present study, a multivariate analysis and geographical information system (GIS) were used to assess and map a soil quality index (SQI) in El-Fayoum depression in the Western Desert of Egypt. For this purpose, a total of 36 geo-referenced representative soil samples (0–0.6 m) were collected and analyzed according to standardized protocols. Principal component analysis (PCA) was used to reduce the dataset into new variables, to avoid multi-collinearity, and to determine relative weights (Wi) and soil indicators (Si), which were used to obtain the soil quality index (SQI). The zones of soil quality were determined using principal component scores and cluster analysis of soil properties. A soil quality index map was generated using a geostatistical approach based on ordinary kriging (OK) interpolation. The results show that the soil data can be classified into three clusters: Cluster I represents about 13.89% of soil samples, Cluster II represents about 16.6% of samples, and Cluster III represents the rest of the soil data (69.44% of samples). In addition, the simulation results of cluster analysis using the Monte Carlo method show satisfactory results for all clusters. The SQI results reveal that the study area is classified into three zones: very good, good, and fair soil quality. The areas categorized as very good and good quality occupy about 14.48% and 50.77% of the total surface investigated, and fair soil quality (mainly due to salinity and low soil nutrients) constitutes about 34.75%. As a whole, the results indicate that the joint use of PCA and GIS allows for an accurate and effective assessment of the SQI.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:American Chemical Society (ACS) Funded by:FCT | CICECO, FCT | CICECO, FCT | SFRH/BD/135976/2018FCT| CICECO ,FCT| CICECO ,FCT| SFRH/BD/135976/2018Nicolas Schaeffer; Dinis O. Abranches; Liliana P. Silva; Mónia A.R. Martins; Pedro J. Carvalho; Olga Russina; Alessandro Triolo; Laurent Paccou; Yannick Guinet; Alain Hedoux; João A.P. Coutinho;The nonionic Type V deep eutectic solvent (DESs) thymol + menthol is experimentally and computationally studied aiming to clarify the relation between its liquid phase structure and its thermodynamic nonideality. 1H NMR, Raman, and X-ray scattering analysis of the thymol + menthol system, supported by molecular dynamics simulations, show complex intermolecular interactions dominated by sterically hindered H-bonded clusters. For temperatures greater than or equal to room temperature, a quasi-linear evolution of the eutectic system properties between the pure compounds is observed, suggesting the absence of a magic stoichiometric composition in the eutectic solvent. However, temperature dependent Raman spectroscopy indicates a notable increase in thymol-menthol H-bonding as temperatures approach the eutectic point. This study shows that nonionic Type V DESs present an important temperature-dependent nonideality originating from the change in the intermolecular H-bonding with temperature. These findings have significant implications for the design and growing application of Type V DESs.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Informa UK Limited Raffaele Spinelli; Raffaele Spinelli; Diana Tuomasjukka; Natascia Magagnotti; Natascia Magagnotti;Traditional coppice stands represent a sizable proportion of the Mediterranean forests and are generally geared to the production of firewood, which is eventually fed to traditional stoves for residential heat generation. In recent years, an alternative use has developed whereby trees are chipped whole and chips are fed to centralized heating plants. This latter system allows full mechanization of all supply chain steps and is considered more suited to modern living habits; at the same time, its introduction has raised concerns about possible new impacts on sustainability. This study presents a sustainability impact analysis (SIA) of the two systems, conducted with the Tool for Sustainability Impact Assessment (ToSIA). The results indicate that the new system is generally preferable. All indicators point at the superiority of the new system over the traditional one, except for employment potential. Compared with traditional firewood systems, the innovative system requires fewer workers, but it pays better and offers much safer workplaces. While the energy efficiency of a district heating system is not much higher than that of modern firewood stoves, the larger centralized plant can be fitted with better filters and emits much less particulate matter, which makes it especially suited to support development at a local level. Even if mechanized cutting caused a 20% reduction of coppice yields - which has yet to be proven - the new system would still prove more sustainable than the traditional one.
International Journa... arrow_drop_down International Journal of Forest EngineeringArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14942119.2021.1913710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 29 Powered bymore_vert International Journa... arrow_drop_down International Journal of Forest EngineeringArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14942119.2021.1913710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2022 ItalyPublisher:OECD Authors: Iacomino Clelia; Rossi Alessandro; Saputo Aristea;doi: 10.1787/5570e155-en
The launch traffic to Low Earth Orbit (LEO) is undergoing significant changes: instead of launching few, complex, large and expensive spacecraft, the trend is now towards the use of multitudes of small, less complex and lower-cost satellites. Large constellations, encompassing thousands of satellites in restricted regions of space, are emerging as important space assets. The intensifying commercial use of LEO and international debate regarding the stability of the space environment is a growing discussion among policy makers. Utilizing the SDM 5.0 evolutionary model developed by the Italian National Council of Research (CNR), the first step of this analysis is to estimate the growth of the space objects in LEO in the next decades. The analysis considers the space objects >10 cm, including active and defunct satellites, spent rockets bodies and fragments, along with varying future traffic, mitigation and remediation scenarios. Subsequently, the analysis focuses on the probability of collision with active satellites and on related mitigation and remediation scenarios. Based on this, the study employs a qualitative and preliminary approach to assess satellite operators' economic convenience of adopting measures that can mitigate the risk of collision by comparing their cost to the damage costs that may occur in case of collision. Finally, the study dedicate its concluding considerations to discuss if a free market setting can stimulate the formation of effective solutions to space debris challenges (namely, if it provides operators with the economic incentive to adopt or develop mitigation measures) or if public institutions' intervention is needed to finance mitigation strategies and, in particular, complex technologies development and adoption.
CNR ExploRA arrow_drop_down https://doi.org/10.1787/5570e1...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1787/5570e155-en&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1787/5570e1...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1787/5570e155-en&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, ItalyPublisher:MDPI AG Iva Bojic; Dániel Kondor; Wei Tu; Ke Mai; Paolo Santi; Carlo Ratti;doi: 10.3390/su13063424
handle: 1721.1/131354
In this paper, we explore the potential for a partial integration of private and public transportation as provided by taxi and bus services on the level of individual trips. While these modes are typically separated for economic reasons, in the future with shared Autonomous Vehicles (AVs) providing cheap and efficient transportation services, such distinctions will blur. Consequently, optimization based on real-time data will allow exploiting parallels in demand in a dynamic way, such as the proposed approach in the current work. New operational and pricing strategies will then need to be considered, along with regulatory tools to limit congestion, encourage sharing and provide services in a more sustainable way by utilizing a dynamic landscape of urban transportation. In the current work, we evaluate existing parallels between individual bus and taxi trips in two Asian cities and show how exploiting these synergies could form the basis of achieving some of the above goals in the future.
DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.3390/su13063424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.3390/su13063424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Marco Dettori; Carla Cesaraccio; Pierpaolo Duce; Valentina Mereu;With an approach combining crop modelling and biotechnology to assess the performance of three durum wheat cultivars (Creso, Duilio, Simeto) in a climate change context, weather and agronomic datasets over the period 1973–2004 from two sites, Benatzu and Ussana (Southern Sardinia, Itay), were used and the model responses were interpreted considering the role of DREB genes in the genotype performance with a focus on drought conditions. The CERES-Wheat crop model was calibrated and validated for grain yield, earliness and kernel weight. Forty-eight synthetic scenarios were used: 6 scenarios with increasing maximum air temperature; 6 scenarios with decreasing rainfall; 36 scenarios combining increasing temperature and decreasing rainfall. The simulated effects on yields, anthesis and kernel weights resulted in yield reduction, increasing kernel weight, and shortened growth duration in both sites. Creso (late cultivar) was the most sensitive to simulated climate conditions. Simeto and Duilio (early cultivars) showed lower simulated yield reductions and a larger anticipation of anthesis date. Observed data showed the same responses for the three cultivars in both sites. The CERES-Wheat model proved to be effective in representing reality and can be used in crop breeding programs with a molecular approach aiming at developing molecular markers for the resistance to drought stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/genes13030488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyPaola Brachi; Piero Bareschino; Erasmo Mancusi; Francesco Pepe; Massimo Urciuolo; Giovanna Ruoppolo;This work numerically analyzes an innovative process layout considering a torrefaction processes followed by chemical looping combustion of biomass waste, solar hydrogen, and carbon methanation. System performances were evaluated by considering several agro-industrial residues (i.e., sugar beet pulp from sugar production, grape marc from winemaking and olive pits from olive oil production) as fuels, CuO supported on zirconia as oxygen carrier, and Ni supported on alumina as methanation catalyst. The torrefaction pre-treatment was proposed for upgrading the properties, namely heating values, moisture content as well as hydrophobicity, and storability, of the selected biomasses. To this aim, experimental runs were performed at 300 °C and 30 min in a lab-scale fixed bed reactor under an inert atmosphere of nitrogen. The study was complemented with an extensive investigation on fuel properties (i.e., ultimate analysis, proximate analysis, calorific values determination) of both the untreated and the torrefied samples, which provides useful input data for modelling their conversion processes. By considering that only electric energy from renewable sources is used, the capability of the proposed process to be used as an energy storage system was eventually assessed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::1779eeabcc8176fe4da2b80a4f339ff6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::1779eeabcc8176fe4da2b80a4f339ff6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, Italy, France, South AfricaPublisher:Wiley Alessia Losa; Juan Vorster; Eleonora Cominelli; Francesca Sparvoli; Dario Paolo; T. Sala; Marika Ferrari; Marina Carbonaro; Stefania Marconi; Emanuela Camilli; Emmanuelle Reboul; Boaz Waswa; Béatrice Ekesa; F. J. L. Aragão; K. Kunert;handle: 10568/127131
AbstractGlobal climate change, causing large parts of the world to become drier with longer drought periods, severely affects production of common beans (Phaseolus vulgaris L.). The bean is worldwide the most produced and consumed food grain legume in the human diet. In common beans, adapted to moderate climates, exposure to drought/heat stress not only results in significant reduction of bean yield but also the nutritional value. This review explores the contribution of common beans to food and nutrient security as well as health. Also discussed is the existing knowledge of the impact of drought/heat stress, associated with a changing climate, specifically on iron (Fe) and phytic acid (PA) that are both among the most important mineral and anti‐nutritional compounds found in common beans. Further discussed is how the application of modern “omics” tools contributes in common beans to higher drought/heat tolerance as well as to higher Fe and reduced PA content. Finally, possible future actions are discussed to develop new common bean varieties with both improved drought/heat tolerance and higher mineral (Fe) content.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127131Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/127131Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Hindawi Limited Authors: Yagmur Atak; C. Ozgur Colpan; Adolfo Iulianelli;doi: 10.1002/er.7186
The most widely used process for hydrogen production is steam methane reforming. It can be carried out using a membrane reactor in which simultaneous hydrogen production and purification occur. Mathematical modeling of these reactors plays a key role in the selection of the design and operating parameters that yield high performance for the reactor. This review study discusses, synthesizes, and compares different mathematical modeling studies on the packed bed membrane reactors for hydrogen production from methane found in the literature. Different approaches used in these modeling studies for the hydrogen permeation steps, reaction kinetic expressions, phases involved (pseudo-homogeneous and heterogeneous), and spatial dimensions (one, two, and three dimensional) are given.
CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Authors: Fabrizio Reale;doi: 10.3390/en15082914
The use of hydrogen in small scale gas turbines is currently limited by several issues. Blending hydrogen with methane or other gaseous fuels can be considered a low medium-term viable solution, with the goal of reducing greenhouse gas emissions. In fact, only small amounts can be mixed with methane in premixed combustors, due to the risk of flashback. The aim of this article is to investigate the injection of small quantities of steam as a method of increasing the maximum permissible hydrogen content in a mixture with methane. The proposed approach involves introducing the steam directly into the combustion chamber into the main fuel feeding system of a Turbec T100. The study is carried out by means of CFD analysis of the combustion process. A thermodynamic analysis of the energy system is used to determine boundary conditions. The combustion chamber is discretized using a three-dimensional mesh consisting of 4.7 million nodes and the RANS RSM model is used to simulate the effects of turbulence. The results show that the addition of steam may triple the permissible percentage of hydrogen in the mixture for the considered MGT, passing from 10% to over 30% by volume, also leading to a reduction in NOx emissions without a significant variation in CO emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Mohamed K. Abdel-Fattah; Elsayed Said Mohamed; Enas M. Wagdi; Sahar A. Shahin; Ali A. Aldosari; Rosa Lasaponara; Manal A. Alnaimy;doi: 10.3390/su13041824
Soil quality assessment is the first step towards precision farming and agricultural management. In the present study, a multivariate analysis and geographical information system (GIS) were used to assess and map a soil quality index (SQI) in El-Fayoum depression in the Western Desert of Egypt. For this purpose, a total of 36 geo-referenced representative soil samples (0–0.6 m) were collected and analyzed according to standardized protocols. Principal component analysis (PCA) was used to reduce the dataset into new variables, to avoid multi-collinearity, and to determine relative weights (Wi) and soil indicators (Si), which were used to obtain the soil quality index (SQI). The zones of soil quality were determined using principal component scores and cluster analysis of soil properties. A soil quality index map was generated using a geostatistical approach based on ordinary kriging (OK) interpolation. The results show that the soil data can be classified into three clusters: Cluster I represents about 13.89% of soil samples, Cluster II represents about 16.6% of samples, and Cluster III represents the rest of the soil data (69.44% of samples). In addition, the simulation results of cluster analysis using the Monte Carlo method show satisfactory results for all clusters. The SQI results reveal that the study area is classified into three zones: very good, good, and fair soil quality. The areas categorized as very good and good quality occupy about 14.48% and 50.77% of the total surface investigated, and fair soil quality (mainly due to salinity and low soil nutrients) constitutes about 34.75%. As a whole, the results indicate that the joint use of PCA and GIS allows for an accurate and effective assessment of the SQI.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:American Chemical Society (ACS) Funded by:FCT | CICECO, FCT | CICECO, FCT | SFRH/BD/135976/2018FCT| CICECO ,FCT| CICECO ,FCT| SFRH/BD/135976/2018Nicolas Schaeffer; Dinis O. Abranches; Liliana P. Silva; Mónia A.R. Martins; Pedro J. Carvalho; Olga Russina; Alessandro Triolo; Laurent Paccou; Yannick Guinet; Alain Hedoux; João A.P. Coutinho;The nonionic Type V deep eutectic solvent (DESs) thymol + menthol is experimentally and computationally studied aiming to clarify the relation between its liquid phase structure and its thermodynamic nonideality. 1H NMR, Raman, and X-ray scattering analysis of the thymol + menthol system, supported by molecular dynamics simulations, show complex intermolecular interactions dominated by sterically hindered H-bonded clusters. For temperatures greater than or equal to room temperature, a quasi-linear evolution of the eutectic system properties between the pure compounds is observed, suggesting the absence of a magic stoichiometric composition in the eutectic solvent. However, temperature dependent Raman spectroscopy indicates a notable increase in thymol-menthol H-bonding as temperatures approach the eutectic point. This study shows that nonionic Type V DESs present an important temperature-dependent nonideality originating from the change in the intermolecular H-bonding with temperature. These findings have significant implications for the design and growing application of Type V DESs.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Informa UK Limited Raffaele Spinelli; Raffaele Spinelli; Diana Tuomasjukka; Natascia Magagnotti; Natascia Magagnotti;Traditional coppice stands represent a sizable proportion of the Mediterranean forests and are generally geared to the production of firewood, which is eventually fed to traditional stoves for residential heat generation. In recent years, an alternative use has developed whereby trees are chipped whole and chips are fed to centralized heating plants. This latter system allows full mechanization of all supply chain steps and is considered more suited to modern living habits; at the same time, its introduction has raised concerns about possible new impacts on sustainability. This study presents a sustainability impact analysis (SIA) of the two systems, conducted with the Tool for Sustainability Impact Assessment (ToSIA). The results indicate that the new system is generally preferable. All indicators point at the superiority of the new system over the traditional one, except for employment potential. Compared with traditional firewood systems, the innovative system requires fewer workers, but it pays better and offers much safer workplaces. While the energy efficiency of a district heating system is not much higher than that of modern firewood stoves, the larger centralized plant can be fitted with better filters and emits much less particulate matter, which makes it especially suited to support development at a local level. Even if mechanized cutting caused a 20% reduction of coppice yields - which has yet to be proven - the new system would still prove more sustainable than the traditional one.
International Journa... arrow_drop_down International Journal of Forest EngineeringArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14942119.2021.1913710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 29 Powered bymore_vert International Journa... arrow_drop_down International Journal of Forest EngineeringArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14942119.2021.1913710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2022 ItalyPublisher:OECD Authors: Iacomino Clelia; Rossi Alessandro; Saputo Aristea;doi: 10.1787/5570e155-en
The launch traffic to Low Earth Orbit (LEO) is undergoing significant changes: instead of launching few, complex, large and expensive spacecraft, the trend is now towards the use of multitudes of small, less complex and lower-cost satellites. Large constellations, encompassing thousands of satellites in restricted regions of space, are emerging as important space assets. The intensifying commercial use of LEO and international debate regarding the stability of the space environment is a growing discussion among policy makers. Utilizing the SDM 5.0 evolutionary model developed by the Italian National Council of Research (CNR), the first step of this analysis is to estimate the growth of the space objects in LEO in the next decades. The analysis considers the space objects >10 cm, including active and defunct satellites, spent rockets bodies and fragments, along with varying future traffic, mitigation and remediation scenarios. Subsequently, the analysis focuses on the probability of collision with active satellites and on related mitigation and remediation scenarios. Based on this, the study employs a qualitative and preliminary approach to assess satellite operators' economic convenience of adopting measures that can mitigate the risk of collision by comparing their cost to the damage costs that may occur in case of collision. Finally, the study dedicate its concluding considerations to discuss if a free market setting can stimulate the formation of effective solutions to space debris challenges (namely, if it provides operators with the economic incentive to adopt or develop mitigation measures) or if public institutions' intervention is needed to finance mitigation strategies and, in particular, complex technologies development and adoption.
CNR ExploRA arrow_drop_down https://doi.org/10.1787/5570e1...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1787/5570e155-en&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1787/5570e1...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1787/5570e155-en&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, ItalyPublisher:MDPI AG Iva Bojic; Dániel Kondor; Wei Tu; Ke Mai; Paolo Santi; Carlo Ratti;doi: 10.3390/su13063424
handle: 1721.1/131354
In this paper, we explore the potential for a partial integration of private and public transportation as provided by taxi and bus services on the level of individual trips. While these modes are typically separated for economic reasons, in the future with shared Autonomous Vehicles (AVs) providing cheap and efficient transportation services, such distinctions will blur. Consequently, optimization based on real-time data will allow exploiting parallels in demand in a dynamic way, such as the proposed approach in the current work. New operational and pricing strategies will then need to be considered, along with regulatory tools to limit congestion, encourage sharing and provide services in a more sustainable way by utilizing a dynamic landscape of urban transportation. In the current work, we evaluate existing parallels between individual bus and taxi trips in two Asian cities and show how exploiting these synergies could form the basis of achieving some of the above goals in the future.
DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.3390/su13063424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.3390/su13063424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu