
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt

doi: 10.3390/su13041824
handle: 20.500.14243/398419
Soil quality assessment is the first step towards precision farming and agricultural management. In the present study, a multivariate analysis and geographical information system (GIS) were used to assess and map a soil quality index (SQI) in El-Fayoum depression in the Western Desert of Egypt. For this purpose, a total of 36 geo-referenced representative soil samples (0–0.6 m) were collected and analyzed according to standardized protocols. Principal component analysis (PCA) was used to reduce the dataset into new variables, to avoid multi-collinearity, and to determine relative weights (Wi) and soil indicators (Si), which were used to obtain the soil quality index (SQI). The zones of soil quality were determined using principal component scores and cluster analysis of soil properties. A soil quality index map was generated using a geostatistical approach based on ordinary kriging (OK) interpolation. The results show that the soil data can be classified into three clusters: Cluster I represents about 13.89% of soil samples, Cluster II represents about 16.6% of samples, and Cluster III represents the rest of the soil data (69.44% of samples). In addition, the simulation results of cluster analysis using the Monte Carlo method show satisfactory results for all clusters. The SQI results reveal that the study area is classified into three zones: very good, good, and fair soil quality. The areas categorized as very good and good quality occupy about 14.48% and 50.77% of the total surface investigated, and fair soil quality (mainly due to salinity and low soil nutrients) constitutes about 34.75%. As a whole, the results indicate that the joint use of PCA and GIS allows for an accurate and effective assessment of the SQI.
geographic information, Soil quality index, Environmental effects of industries and plants, TJ807-830, soil evaluation, TD194-195, soil quality index, Renewable energy sources, Environmental sciences, Cluster analysis, GE1-350, Geographic information, Soil evaluation, cluster analysis
geographic information, Soil quality index, Environmental effects of industries and plants, TJ807-830, soil evaluation, TD194-195, soil quality index, Renewable energy sources, Environmental sciences, Cluster analysis, GE1-350, Geographic information, Soil evaluation, cluster analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).68 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
