- home
- Search
- Energy Research
- 2021-2025
- 12. Responsible consumption
- 11. Sustainability
- Digital.CSIC
- Energy Research
- 2021-2025
- 12. Responsible consumption
- 11. Sustainability
- Digital.CSIC
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Authors: Paniagua, Angel;doi: 10.3390/su151511702
handle: 10261/332579
From the perspective of the recent orientations of virtual geographies, the idea of smart and novelty villages in the context of renovated material rural worlds is conceptualized. The sum of new virtual and new materiality produces virtual and novelty spaces and places, which acquire a precise territorial dimension in the rural policy and politics of smart villages. Smart villages can not only be framed in global smart contexts, but they can also play a fundamental role in de-global territorial horizons as an instrument of resistance to global processes of rural restructuring. The smart political idea or orientation takes shape in each rural community with a different expression in the form of new local materials. The concept of quality virtuality is developed theoretically along three axes: the encounter between smart, novelty and new materials; the smart in the equitable rural community; and the right to disconnection in remote rural areas.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 43 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SpainPublisher:Copernicus GmbH Authors: Rotman Criollo Manjarrez; Víctor Vilarrasa; Alejandro Orfila; Angels Fernández-Mora;handle: 10261/311397
Coastal areas are more densely populated than inland areas and present faster rates of population increase and urbanization. This trend is expected to continue in the coming decades, and thus, the demand of natural resources in coastal areas, such as water and energy resources, increasing the pressure and impact on the environment, superposed to the effects of climate change. Currently, in Europe, the demand for heating in buildings and businesses outnumbers the demand for cooling. However, the latter is gradually catching up due to rising demand for air cooling or refrigeration for industry such as food, technological and medical supplies. The energy required to cool buildings in Europe is expected to increase by more than 70% by 2030, while energy used to heat buildings may decrease by 30% (UE, 2018). Low Temperature Geothermal Energy (LTGE) is most likely the green energy production method for heating and cooling with the highest potential to provide affordable and clean energy and meet the CO2-emissions reduction goals of the Green Deal. Despite advances on LTGE technologies, the efficiency of these systems remains inherently sensitive to changes in hydrodynamics and the media (e.g., changes in the groundwater thermal regime). Groundwater, on the other hand, is the world's largest freshwater resource, and it is especially important in coastal areas because interactions between aquifer systems and sea water may lead to salinization and resource loss. Because geothermal systems and coastal aquifers interact directly, specially at groundwater discharge areas, it is clear that a better understanding of the potential interactions of geothermal systems with current and prospective coastal aquifer processes is essential for their design and foreseeing potential environmental effects. To address these issues, we model variable-density groundwater coupled with heat transport to simulate the long-term evolution of groundwater salinity and aquifer thermal energy discharge. We find that the heating/cooling-induced water density variations affect the seawater intrusion. Understanding the behavior of the groundwater system is required to ensure sustainable water, energy, and coastal ecosystem management.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-16094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 18 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-16094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Josep Peñuelas; Josep Germain; Enrique Álvarez; Enric Aparicio; Pere Arús; Corina Basnou; Cèsar Blanché; Núria Bonada; Puri Canals; Marco Capodiferro; Xavier Carceller; Alexandre Casademunt; Joan Casals; Pere Casals; Francesc Casañas; Jordi Catalán; Joan Checa; Pedro J. Cordero; Joaquim Corominas; Adolf de Sostoa; Josep-Maria Espelta Morral; Marta Estrada; Ramon Folch; Teresa Franquesa; Carla Garcia-Lozano; Mercè Garí; Anna Maria Geli; Óscar González-Guerrero; Javier Gordillo; Joaquim Gosálbez; Joan O. Grimalt; Anna Guàrdia; Rosó Isern; Jordi Jordana; Eva Junqué; Josep Lascurain; Jordi Lleonart; Gustavo A. Llorente; Francisco Lloret; Josep Lloret; Josep Maria Mallarach; Javier Martín-Vide; Rosa Maria Medir; Yolanda Melero; Josep Montasell; Albert Montori; Antoni Munné; Oriol Nel·lo; Santiago Palazón; Marina Palmero; Margarita Parés; Joan Pino; Josep Pintó; Llorenç Planagumà; Xavier Pons; Narcís Prat; Carme Puig; Ignasi Puig; Pere Puigdomènech; Eudald Pujol-Buxó; Núria Roca; Jofre Rodrigo; José Domingo Rodríguez-Teijeiro; Francesc Xavier Roig-Munar; Joan Romanyà; Pere Rovira; Llorenç Sàez; Maria Teresa Sauras-Yera; David Serrat; Joan Simó; Jordi Soler; Jaume Terradas; Ramon Vallejo; Paloma Vicente; Joan Manuel Vilaplana; Dolors Vinyoles;doi: 10.3390/land10020144
handle: 10261/239705 , 2117/353319
This paper provides an overview of the last 40 years of use, and in many cases abuse, of the natural resources in Catalonia, a country that is representative of European countries in general, and especially those in the Mediterranean region. It analyses the use of natural resources made by mining, agriculture, livestock, logging, fishing, nature tourism, and energy production and consumption. This use results in an ecological footprint, i.e., the productive land and sea surface required to generate the consumed resources and absorb the resulting waste, which is about seven times the amount available, a very high number but very similar to other European countries. This overexploitation of natural resources has a huge impact on land and its different forms of cover, air, and water. For the last 25 years, forests and urban areas have each gained almost 3% more of the territory at the expense of agricultural land; those municipalities bordering the sea have increased their number of inhabitants and activity, and although they only occupy 6.7% of the total surface area, they account for 43.3% of the population; air quality has stabilized since the turn of the century, and there has been some improvement in the state of aquatic ecosystems, but still only 36% are in good condition, while the remainder have suffered morphological changes and different forms of nonpoint source pollution; meanwhile the biodiversity of flora and fauna remains still under threat. Environmental policies do not go far enough so there is a need for revision of the legislation related to environmental impact and the protection of natural areas, flora, and fauna. The promotion of environmental research must be accompanied by environmental education to foster a society which is more knowledgeable, has more control and influence over the decisions that deeply affect it. Indeed, nature conservation goes hand in hand with other social and economic challenges that require a more sustainable vision. Today’s problems with nature derive from the current economic model, which is environmentally unsustainable in that it does not take into account environmental impacts. Lastly, we propose a series of reasonable and feasible priority measures and actions related to each use made of the country’s natural resources, to the impacts they have had, and to their management, in the hope that these can contribute to improving the conservation and management of the environment and biodiversity and move towards sustainability.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 277visibility views 277 download downloads 454 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021 SpainPublisher:ACM Funded by:EC | WATCHPLANTEC| WATCHPLANTMostafa Wahby; Niclas Roxhed; Virginia Hernandez-Santana; Babak Salamat; Laura García-Carmona; Stjepan Bogdan; Alfredo Quijano-Lopez; Serge Kernbach; Andreas Kernbach; Heiko Hamann; Mikolaj Dobielewski; Antonio Díaz-Espejo;handle: 10261/251495
6 páginas.- 2 figura.- 29 referencias.- 1st Conference on Information Technology for Social Good, GoodIT 2021, Rome 9-11 September 2021 New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being"sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms"to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms"to benefit social good in terms of environmental monitoring in urban scenarios. © 2021 Owner/Author. Project WatchPlant has received funding from the European Union’s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899 Peer reviewed
https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 376 Powered bymore_vert https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, SpainPublisher:Elsevier BV Authors: Chinea, Leonardo; Slopiecka, Katarzyna; Bartocci, Pietro; Alissa Park, Ah-Hyung; +3 AuthorsChinea, Leonardo; Slopiecka, Katarzyna; Bartocci, Pietro; Alissa Park, Ah-Hyung; Wang, Shuang; Jiang, Ding; Fantozzi, Francesco;handle: 10261/283445
20 figures, 5 tables. An important percentage of biogas is made of CO2, which decreases its heating value. If CO2 is adsorbed two advantages can be achieved: CO2 capture and the increase of biogas heating value. Biomethane is a renewable fuel, which can provide energy autonomy and a reduction of greenhouse gases emissions. CO2 capture from power plants by using solid adsorbents is an effective method for the reduction of CO2 emission and an excellent solution for methane enrichment of biogas. This work evaluates the CO2 removal and methane enrichment of biogas by adsorption of gas molecules to solid surfaces of sorbents in a pilot-scale biogas upgrading system. The materials selected to remove CO2 from gases were three: calcium hydroxide, commercial activated carbon and solid amine adsorbent, loaded on commercial activated carbon. The amine adsorbent used in this work was polyethylenimine (PEI). The adsorbents were characterized by thermal stability through thermogravimetric analyzer (TGA), X-ray diffraction analysis (XRD), specific area, pore size distribution and particle size distribution. The CO2 adsorption capacities of the sorbents were measured using a thermogravimetric analyzer with pure CO2 at atmospheric pressure. The CO2 adsorption capacity test was 0.00653 mol/g for calcium hydroxide, 0.00219 mol/g for commercial activated carbon with 0,1 wt% of amine and 0.00168 mol/g for commercial activated carbon. The effect of adsorbent dosage as a function of time was also investigated. The result showed that the CO2 adsorption of the sorbents increases with adsorbent dosage. The results obtained from the upgrading tests conducted in the lab-scale system showed that a purity of 99.9 % methane was obtained using 15 g of calcium hydroxide, a purity of methane of 87 % was obtained using 30 g of commercial activated carbon with 0.1 wt% amine and a purity around 86 % methane was obtained using 30 g of commercial activated carbon. The authors would like to thank H2CU for the possibility of performing the exchange with the Columbia University. Authors want to acknowledge for funding, the project: “Technical, Environmental and Socio-Economic study of power-to-fuel solutions for a sustainable path towards a green future: achieving 80 % renewable electric energy and 40 % renewable primary energy supply within the next two decades”. Funded in 2020 by PRIN Italian national funds and registered with the code: 2020AA9N4M. This work has been funded by the GTCLC-NEG project that has received funding from the Euro-pean Union’s Horizon 2020 research and innovation programme under the Marie Sklodow-ska-Curie grant agreement No. 101018756. Peer reviewed
Fuel arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 170 Powered bymore_vert Fuel arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Francisco J. Tapiador; Andrés Navarro; Josu Mezo; Sergio de la Llave; Jesús Muñoz;doi: 10.3390/su13094843
handle: 10261/264939
Sustainable Development Goals (SDGs) include a subset of targets that can be advanced through standard urban management activities. In particular, routine urban vegetation management comprises a number of activities with potential impact on Goal #4 (quality education), #11 (sustainable cities and communities), #13 (protect the planet), #15 (life on land), and, perhaps less obviously, but equally important, on Goal #8 (good jobs and economic growth). This paper discusses how urban vegetation management can help achieve the SDGs at a local level. Drawing on a case study (Talavera de la Reina, Spain), it is shown that an intelligent approach to urban vegetation management can leverage resources towards the SDGs at little or no cost to municipalities. Minor modifications and conceptual changes in how standard practices are carried out can make a difference. Including this dimension can even result in a positive balance for the municipal budget. Our analyses and proposals are of broad and direct applicability for urban areas worldwide and can help city authorities and officials to align their cities with the SDGs simply by making minor adjustments to how they currently deal with urban vegetation.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 93 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Wiley Authors: Andrés Moya; Jie Dong; Vincent Blay; Vincent Blay;doi: 10.1002/bbb.2281
handle: 10261/262199
AbstractThe price of chemicals is a very complex variable. It can be impacted by production costs but also by market and managerial factors, which may have complex relationships with molecular characteristics and the state of technology and society. In this work, we explore the extent to which molecular characteristics can help explain natural product prices with the aid of machine learning tools. We interpret models trained on molecular descriptors and molecular fingerprints. These models can explain a notable proportion of the variation in prices, suggesting that production and separation costs are a major contributor to current natural product prices. Some molecular properties stand out as key price drivers across the chemical space, including hydrophobicity and the presence of certain heteroatoms. On the other hand, we demonstrate how the application of cliff analysis to prices allows the identification of small chemical transformations that have a remarkable impact on prices. Overall, the work suggests that machine learning could help achieve more consistent and fairer pricing and provides specific examples of chemical transformations in which synthetic biology could add significant value. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 50 Powered bymore_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, SpainPublisher:Elsevier BV José Antonio Vázquez; Araceli Menduíña; Ana I. Durán; Margarita Nogueira; Javier Fraguas; Adrián Pedreira; Jesus Valcarcel;handle: 10261/331864
12 pages, 6 figures, 4 tables.-- Under a Creative Commons license The marine gelatin is one of the most interesting biocompounds to recover from fish skin by-products. The initial processes commonly used for gelatin isolation are based on the alkaline and acid washing of skins. These streams, with remarkable levels of proteins, must be efficiently managed and depurated to avoid environmental pollution and to make the gelatin recovery viable. In the current study, we have evaluated the bioconversion of those contaminant gelatin effluents (GE) from tuna, shark, turbot and salmon by means of two probiotic lactic acid bacteria (LAB). These LAB, Lactobacillus plantarum and L. brevis were fermented in batch culture, under controlled conditions, in each of the effluents which simulated the common medium for LAB (Man, Rogosa, Sharp, MRS) but without commercial peptones. In the 50% of the media based on GE, the growth of both bacteria (achieving, for example, 5.2 g/L of L. brevis in alkaline-tuna stream) and lactic acid productions (20 g/L using citric acid-shark stream in L. plantarum) were similar or higher than those observed in MRS. Minimal GE media formulated only with effluents, glucose and salts demonstrated the essential presence of yeast extract as an ingredient to achieve optimal growths. Unstructured mathematical equations modelled accuracy the experimental kinetics of all LAB productions (R2 = 0.92–0.99) and nutrient consumptions (R2 = 0.75–0.99). From an economical viewpoint, productions on effluents reduced around 3 times the costs of production reported in MRS. GE showed to be a good substrate to support LAB productions and the approach exposed here is a sustainable solution to valorize and depurate such wastewaters will help to increase the profitability of fish gelatin industry This research was funded by the projects LIFE-REFISH (European Union's LIFE PROGRAMME under Grant Agreement No. 101047323, LIFE21-ENV-ES-LIFE REFISH), Intramural PIE-CSIC (202130E070) and Xunta de Galicia (Grupos de Potential Crecimiento, IN607B 2021/11) Peer reviewed
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 54 Powered bymore_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Informa UK Limited Funded by:EC | BEYOND-CODEEC| BEYOND-CODEAuthors: Daniel Curto-Millet; Alberto Corsín Jiménez;handle: 10261/305751
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by- nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way The sustainability of commons has benefited from Elinor Ostrom´s analysis of shared resources. In her work, sustainability was described in a univocal manner–successful or not–depending on the common’s long-term capacity to survive within an uncertain environment. In recent years, this view of sustainability has been applied to the study of digital commons, including open source. Building on more recent work on sustainability, this paper challenges this univocal conception of sustainability in open source. Through a critical review of the literature, it unveils the coexistence of multiple notions of sustainability in open source and proposes a typology of sustainabilities (resource-based, infrastructural, and interactional). We propose that the degree and quality of the interrelationship between these different types of sustainability need to be explored, leading to the theorisation of three possible scenarios (trade-offs, synergy, and independence). We discuss and put forward a research agenda. Peer reviewed
European Journal of ... arrow_drop_down European Journal of Information SystemsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/0960085x.2022.2046516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 28 Powered bymore_vert European Journal of ... arrow_drop_down European Journal of Information SystemsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/0960085x.2022.2046516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:EC | DiverfarmingEC| DiverfarmingAuthors: Sánchez Navarro, Virgina; Almagro Bonmatí, María; Shahrokh, Vajihe; Martínez Martínez, Silvia; +5 AuthorsSánchez Navarro, Virgina; Almagro Bonmatí, María; Shahrokh, Vajihe; Martínez Martínez, Silvia; Acosta Avilés, José Alberto; Martínez Mena, María; Boix Fayos, Carolina; Díaz Pereira, Elvira; Zornoza Belmonte, Raúl;pmid: 35809735
handle: 10261/285236 , 10317/12152
The implementation of alley cropping in orchards can be a sustainable strategy to increase farm productivity by crop diversification and contribute to climate change mitigation. In this research, we evaluated the short-termeffect of alley cropping with reduced tillage on soil CO2 and N2O emissions and soil total organic carbon (TOC) in an almond orchard under Mediterranean rainfed conditions. We compared an almond monoculture with tillage in all plot surface (MC) with almond crop with reduced tillage and growth of Capparis spinosa (D1) and almond crop with reduced tillage and growth of Thymus hyemalis (D2). For two years, soil CO2 and N2O were measured, with soil sampling at the start and end of the experimental period. Results showed that CO2 emission rates followed the soil temperature pattern, while N2O emissions were not correlated with temperature nor moisture. Soil CO2 emissions were significantly higher in MC(87mgm−2 h−1), with no significant differences between D1 and D2 (69mgm−2 h−1). Some peaks in CO2 effluxes were observed after tillage operations during warm days. Soil N2Oemission rateswere not significantly different among treatments. Cumulative CO2 and CO2 equivalent (CO2e) emissions were significantly highest in MC. When CO2e emissions were expressed on a crop production basis, D2 showed the significantly lowest values (5080 g kg−1) compared to D1 (50,419 g kg−1) and MC (87,836 g kg−1), owing to the high thyme yield, additional to the almond yield. No production was obtained for C. spinosa, since at least two more years are required. TOC did not change with time in MCneither D1, but it significantly increased inD2 from3.85 g kg−1 in 2019 to 4.62 g kg−1 in 2021. Thus, alley cropping can contribute to increase the agroecosystem productivity and reduce CO2 emissions. However, it is necessary to grow
Repositorio Digital ... arrow_drop_down Repositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 123 Powered bymore_vert Repositorio Digital ... arrow_drop_down Repositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Authors: Paniagua, Angel;doi: 10.3390/su151511702
handle: 10261/332579
From the perspective of the recent orientations of virtual geographies, the idea of smart and novelty villages in the context of renovated material rural worlds is conceptualized. The sum of new virtual and new materiality produces virtual and novelty spaces and places, which acquire a precise territorial dimension in the rural policy and politics of smart villages. Smart villages can not only be framed in global smart contexts, but they can also play a fundamental role in de-global territorial horizons as an instrument of resistance to global processes of rural restructuring. The smart political idea or orientation takes shape in each rural community with a different expression in the form of new local materials. The concept of quality virtuality is developed theoretically along three axes: the encounter between smart, novelty and new materials; the smart in the equitable rural community; and the right to disconnection in remote rural areas.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 43 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SpainPublisher:Copernicus GmbH Authors: Rotman Criollo Manjarrez; Víctor Vilarrasa; Alejandro Orfila; Angels Fernández-Mora;handle: 10261/311397
Coastal areas are more densely populated than inland areas and present faster rates of population increase and urbanization. This trend is expected to continue in the coming decades, and thus, the demand of natural resources in coastal areas, such as water and energy resources, increasing the pressure and impact on the environment, superposed to the effects of climate change. Currently, in Europe, the demand for heating in buildings and businesses outnumbers the demand for cooling. However, the latter is gradually catching up due to rising demand for air cooling or refrigeration for industry such as food, technological and medical supplies. The energy required to cool buildings in Europe is expected to increase by more than 70% by 2030, while energy used to heat buildings may decrease by 30% (UE, 2018). Low Temperature Geothermal Energy (LTGE) is most likely the green energy production method for heating and cooling with the highest potential to provide affordable and clean energy and meet the CO2-emissions reduction goals of the Green Deal. Despite advances on LTGE technologies, the efficiency of these systems remains inherently sensitive to changes in hydrodynamics and the media (e.g., changes in the groundwater thermal regime). Groundwater, on the other hand, is the world's largest freshwater resource, and it is especially important in coastal areas because interactions between aquifer systems and sea water may lead to salinization and resource loss. Because geothermal systems and coastal aquifers interact directly, specially at groundwater discharge areas, it is clear that a better understanding of the potential interactions of geothermal systems with current and prospective coastal aquifer processes is essential for their design and foreseeing potential environmental effects. To address these issues, we model variable-density groundwater coupled with heat transport to simulate the long-term evolution of groundwater salinity and aquifer thermal energy discharge. We find that the heating/cooling-induced water density variations affect the seawater intrusion. Understanding the behavior of the groundwater system is required to ensure sustainable water, energy, and coastal ecosystem management.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-16094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 18 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-16094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Josep Peñuelas; Josep Germain; Enrique Álvarez; Enric Aparicio; Pere Arús; Corina Basnou; Cèsar Blanché; Núria Bonada; Puri Canals; Marco Capodiferro; Xavier Carceller; Alexandre Casademunt; Joan Casals; Pere Casals; Francesc Casañas; Jordi Catalán; Joan Checa; Pedro J. Cordero; Joaquim Corominas; Adolf de Sostoa; Josep-Maria Espelta Morral; Marta Estrada; Ramon Folch; Teresa Franquesa; Carla Garcia-Lozano; Mercè Garí; Anna Maria Geli; Óscar González-Guerrero; Javier Gordillo; Joaquim Gosálbez; Joan O. Grimalt; Anna Guàrdia; Rosó Isern; Jordi Jordana; Eva Junqué; Josep Lascurain; Jordi Lleonart; Gustavo A. Llorente; Francisco Lloret; Josep Lloret; Josep Maria Mallarach; Javier Martín-Vide; Rosa Maria Medir; Yolanda Melero; Josep Montasell; Albert Montori; Antoni Munné; Oriol Nel·lo; Santiago Palazón; Marina Palmero; Margarita Parés; Joan Pino; Josep Pintó; Llorenç Planagumà; Xavier Pons; Narcís Prat; Carme Puig; Ignasi Puig; Pere Puigdomènech; Eudald Pujol-Buxó; Núria Roca; Jofre Rodrigo; José Domingo Rodríguez-Teijeiro; Francesc Xavier Roig-Munar; Joan Romanyà; Pere Rovira; Llorenç Sàez; Maria Teresa Sauras-Yera; David Serrat; Joan Simó; Jordi Soler; Jaume Terradas; Ramon Vallejo; Paloma Vicente; Joan Manuel Vilaplana; Dolors Vinyoles;doi: 10.3390/land10020144
handle: 10261/239705 , 2117/353319
This paper provides an overview of the last 40 years of use, and in many cases abuse, of the natural resources in Catalonia, a country that is representative of European countries in general, and especially those in the Mediterranean region. It analyses the use of natural resources made by mining, agriculture, livestock, logging, fishing, nature tourism, and energy production and consumption. This use results in an ecological footprint, i.e., the productive land and sea surface required to generate the consumed resources and absorb the resulting waste, which is about seven times the amount available, a very high number but very similar to other European countries. This overexploitation of natural resources has a huge impact on land and its different forms of cover, air, and water. For the last 25 years, forests and urban areas have each gained almost 3% more of the territory at the expense of agricultural land; those municipalities bordering the sea have increased their number of inhabitants and activity, and although they only occupy 6.7% of the total surface area, they account for 43.3% of the population; air quality has stabilized since the turn of the century, and there has been some improvement in the state of aquatic ecosystems, but still only 36% are in good condition, while the remainder have suffered morphological changes and different forms of nonpoint source pollution; meanwhile the biodiversity of flora and fauna remains still under threat. Environmental policies do not go far enough so there is a need for revision of the legislation related to environmental impact and the protection of natural areas, flora, and fauna. The promotion of environmental research must be accompanied by environmental education to foster a society which is more knowledgeable, has more control and influence over the decisions that deeply affect it. Indeed, nature conservation goes hand in hand with other social and economic challenges that require a more sustainable vision. Today’s problems with nature derive from the current economic model, which is environmentally unsustainable in that it does not take into account environmental impacts. Lastly, we propose a series of reasonable and feasible priority measures and actions related to each use made of the country’s natural resources, to the impacts they have had, and to their management, in the hope that these can contribute to improving the conservation and management of the environment and biodiversity and move towards sustainability.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 277visibility views 277 download downloads 454 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-445X/10/2/144Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaDiposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land10020144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021 SpainPublisher:ACM Funded by:EC | WATCHPLANTEC| WATCHPLANTMostafa Wahby; Niclas Roxhed; Virginia Hernandez-Santana; Babak Salamat; Laura García-Carmona; Stjepan Bogdan; Alfredo Quijano-Lopez; Serge Kernbach; Andreas Kernbach; Heiko Hamann; Mikolaj Dobielewski; Antonio Díaz-Espejo;handle: 10261/251495
6 páginas.- 2 figura.- 29 referencias.- 1st Conference on Information Technology for Social Good, GoodIT 2021, Rome 9-11 September 2021 New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being"sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms"to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms"to benefit social good in terms of environmental monitoring in urban scenarios. © 2021 Owner/Author. Project WatchPlant has received funding from the European Union’s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899 Peer reviewed
https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 376 Powered bymore_vert https://digital.csic... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3462203.3475885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, SpainPublisher:Elsevier BV Authors: Chinea, Leonardo; Slopiecka, Katarzyna; Bartocci, Pietro; Alissa Park, Ah-Hyung; +3 AuthorsChinea, Leonardo; Slopiecka, Katarzyna; Bartocci, Pietro; Alissa Park, Ah-Hyung; Wang, Shuang; Jiang, Ding; Fantozzi, Francesco;handle: 10261/283445
20 figures, 5 tables. An important percentage of biogas is made of CO2, which decreases its heating value. If CO2 is adsorbed two advantages can be achieved: CO2 capture and the increase of biogas heating value. Biomethane is a renewable fuel, which can provide energy autonomy and a reduction of greenhouse gases emissions. CO2 capture from power plants by using solid adsorbents is an effective method for the reduction of CO2 emission and an excellent solution for methane enrichment of biogas. This work evaluates the CO2 removal and methane enrichment of biogas by adsorption of gas molecules to solid surfaces of sorbents in a pilot-scale biogas upgrading system. The materials selected to remove CO2 from gases were three: calcium hydroxide, commercial activated carbon and solid amine adsorbent, loaded on commercial activated carbon. The amine adsorbent used in this work was polyethylenimine (PEI). The adsorbents were characterized by thermal stability through thermogravimetric analyzer (TGA), X-ray diffraction analysis (XRD), specific area, pore size distribution and particle size distribution. The CO2 adsorption capacities of the sorbents were measured using a thermogravimetric analyzer with pure CO2 at atmospheric pressure. The CO2 adsorption capacity test was 0.00653 mol/g for calcium hydroxide, 0.00219 mol/g for commercial activated carbon with 0,1 wt% of amine and 0.00168 mol/g for commercial activated carbon. The effect of adsorbent dosage as a function of time was also investigated. The result showed that the CO2 adsorption of the sorbents increases with adsorbent dosage. The results obtained from the upgrading tests conducted in the lab-scale system showed that a purity of 99.9 % methane was obtained using 15 g of calcium hydroxide, a purity of methane of 87 % was obtained using 30 g of commercial activated carbon with 0.1 wt% amine and a purity around 86 % methane was obtained using 30 g of commercial activated carbon. The authors would like to thank H2CU for the possibility of performing the exchange with the Columbia University. Authors want to acknowledge for funding, the project: “Technical, Environmental and Socio-Economic study of power-to-fuel solutions for a sustainable path towards a green future: achieving 80 % renewable electric energy and 40 % renewable primary energy supply within the next two decades”. Funded in 2020 by PRIN Italian national funds and registered with the code: 2020AA9N4M. This work has been funded by the GTCLC-NEG project that has received funding from the Euro-pean Union’s Horizon 2020 research and innovation programme under the Marie Sklodow-ska-Curie grant agreement No. 101018756. Peer reviewed
Fuel arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 170 Powered bymore_vert Fuel arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Francisco J. Tapiador; Andrés Navarro; Josu Mezo; Sergio de la Llave; Jesús Muñoz;doi: 10.3390/su13094843
handle: 10261/264939
Sustainable Development Goals (SDGs) include a subset of targets that can be advanced through standard urban management activities. In particular, routine urban vegetation management comprises a number of activities with potential impact on Goal #4 (quality education), #11 (sustainable cities and communities), #13 (protect the planet), #15 (life on land), and, perhaps less obviously, but equally important, on Goal #8 (good jobs and economic growth). This paper discusses how urban vegetation management can help achieve the SDGs at a local level. Drawing on a case study (Talavera de la Reina, Spain), it is shown that an intelligent approach to urban vegetation management can leverage resources towards the SDGs at little or no cost to municipalities. Minor modifications and conceptual changes in how standard practices are carried out can make a difference. Including this dimension can even result in a positive balance for the municipal budget. Our analyses and proposals are of broad and direct applicability for urban areas worldwide and can help city authorities and officials to align their cities with the SDGs simply by making minor adjustments to how they currently deal with urban vegetation.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 93 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Wiley Authors: Andrés Moya; Jie Dong; Vincent Blay; Vincent Blay;doi: 10.1002/bbb.2281
handle: 10261/262199
AbstractThe price of chemicals is a very complex variable. It can be impacted by production costs but also by market and managerial factors, which may have complex relationships with molecular characteristics and the state of technology and society. In this work, we explore the extent to which molecular characteristics can help explain natural product prices with the aid of machine learning tools. We interpret models trained on molecular descriptors and molecular fingerprints. These models can explain a notable proportion of the variation in prices, suggesting that production and separation costs are a major contributor to current natural product prices. Some molecular properties stand out as key price drivers across the chemical space, including hydrophobicity and the presence of certain heteroatoms. On the other hand, we demonstrate how the application of cliff analysis to prices allows the identification of small chemical transformations that have a remarkable impact on prices. Overall, the work suggests that machine learning could help achieve more consistent and fairer pricing and provides specific examples of chemical transformations in which synthetic biology could add significant value. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 50 Powered bymore_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, SpainPublisher:Elsevier BV José Antonio Vázquez; Araceli Menduíña; Ana I. Durán; Margarita Nogueira; Javier Fraguas; Adrián Pedreira; Jesus Valcarcel;handle: 10261/331864
12 pages, 6 figures, 4 tables.-- Under a Creative Commons license The marine gelatin is one of the most interesting biocompounds to recover from fish skin by-products. The initial processes commonly used for gelatin isolation are based on the alkaline and acid washing of skins. These streams, with remarkable levels of proteins, must be efficiently managed and depurated to avoid environmental pollution and to make the gelatin recovery viable. In the current study, we have evaluated the bioconversion of those contaminant gelatin effluents (GE) from tuna, shark, turbot and salmon by means of two probiotic lactic acid bacteria (LAB). These LAB, Lactobacillus plantarum and L. brevis were fermented in batch culture, under controlled conditions, in each of the effluents which simulated the common medium for LAB (Man, Rogosa, Sharp, MRS) but without commercial peptones. In the 50% of the media based on GE, the growth of both bacteria (achieving, for example, 5.2 g/L of L. brevis in alkaline-tuna stream) and lactic acid productions (20 g/L using citric acid-shark stream in L. plantarum) were similar or higher than those observed in MRS. Minimal GE media formulated only with effluents, glucose and salts demonstrated the essential presence of yeast extract as an ingredient to achieve optimal growths. Unstructured mathematical equations modelled accuracy the experimental kinetics of all LAB productions (R2 = 0.92–0.99) and nutrient consumptions (R2 = 0.75–0.99). From an economical viewpoint, productions on effluents reduced around 3 times the costs of production reported in MRS. GE showed to be a good substrate to support LAB productions and the approach exposed here is a sustainable solution to valorize and depurate such wastewaters will help to increase the profitability of fish gelatin industry This research was funded by the projects LIFE-REFISH (European Union's LIFE PROGRAMME under Grant Agreement No. 101047323, LIFE21-ENV-ES-LIFE REFISH), Intramural PIE-CSIC (202130E070) and Xunta de Galicia (Grupos de Potential Crecimiento, IN607B 2021/11) Peer reviewed
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 54 Powered bymore_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Informa UK Limited Funded by:EC | BEYOND-CODEEC| BEYOND-CODEAuthors: Daniel Curto-Millet; Alberto Corsín Jiménez;handle: 10261/305751
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by- nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way The sustainability of commons has benefited from Elinor Ostrom´s analysis of shared resources. In her work, sustainability was described in a univocal manner–successful or not–depending on the common’s long-term capacity to survive within an uncertain environment. In recent years, this view of sustainability has been applied to the study of digital commons, including open source. Building on more recent work on sustainability, this paper challenges this univocal conception of sustainability in open source. Through a critical review of the literature, it unveils the coexistence of multiple notions of sustainability in open source and proposes a typology of sustainabilities (resource-based, infrastructural, and interactional). We propose that the degree and quality of the interrelationship between these different types of sustainability need to be explored, leading to the theorisation of three possible scenarios (trade-offs, synergy, and independence). We discuss and put forward a research agenda. Peer reviewed
European Journal of ... arrow_drop_down European Journal of Information SystemsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/0960085x.2022.2046516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 28 Powered bymore_vert European Journal of ... arrow_drop_down European Journal of Information SystemsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/0960085x.2022.2046516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:EC | DiverfarmingEC| DiverfarmingAuthors: Sánchez Navarro, Virgina; Almagro Bonmatí, María; Shahrokh, Vajihe; Martínez Martínez, Silvia; +5 AuthorsSánchez Navarro, Virgina; Almagro Bonmatí, María; Shahrokh, Vajihe; Martínez Martínez, Silvia; Acosta Avilés, José Alberto; Martínez Mena, María; Boix Fayos, Carolina; Díaz Pereira, Elvira; Zornoza Belmonte, Raúl;pmid: 35809735
handle: 10261/285236 , 10317/12152
The implementation of alley cropping in orchards can be a sustainable strategy to increase farm productivity by crop diversification and contribute to climate change mitigation. In this research, we evaluated the short-termeffect of alley cropping with reduced tillage on soil CO2 and N2O emissions and soil total organic carbon (TOC) in an almond orchard under Mediterranean rainfed conditions. We compared an almond monoculture with tillage in all plot surface (MC) with almond crop with reduced tillage and growth of Capparis spinosa (D1) and almond crop with reduced tillage and growth of Thymus hyemalis (D2). For two years, soil CO2 and N2O were measured, with soil sampling at the start and end of the experimental period. Results showed that CO2 emission rates followed the soil temperature pattern, while N2O emissions were not correlated with temperature nor moisture. Soil CO2 emissions were significantly higher in MC(87mgm−2 h−1), with no significant differences between D1 and D2 (69mgm−2 h−1). Some peaks in CO2 effluxes were observed after tillage operations during warm days. Soil N2Oemission rateswere not significantly different among treatments. Cumulative CO2 and CO2 equivalent (CO2e) emissions were significantly highest in MC. When CO2e emissions were expressed on a crop production basis, D2 showed the significantly lowest values (5080 g kg−1) compared to D1 (50,419 g kg−1) and MC (87,836 g kg−1), owing to the high thyme yield, additional to the almond yield. No production was obtained for C. spinosa, since at least two more years are required. TOC did not change with time in MCneither D1, but it significantly increased inD2 from3.85 g kg−1 in 2019 to 4.62 g kg−1 in 2021. Thus, alley cropping can contribute to increase the agroecosystem productivity and reduce CO2 emissions. However, it is necessary to grow
Repositorio Digital ... arrow_drop_down Repositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 123 Powered bymore_vert Repositorio Digital ... arrow_drop_down Repositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu