
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Model Optimum Budidaya Padi Intensif Dengan Pertimbangan Gas Metan Pada Sawah Irigasi Teknis
The objectives of this research are (1) to analyze the changing patterns of soil quality, water quality and Methane (CH4) due to cropping index improvement, (2) to analyze productivity and economic due to the increasing of rice cultivation intensity at technical irrigated rice field, (3) to arrange the optimum model of intensive rice cultivation at technical irrigated rice field by Integrated Crop Management (ICM) approach with low methane emission sustainably, and (4) to analyze sustainable index of optimum model of intensive rice cultivation with cropping index improvement at technical irrigated rice field and (5) to arrange the policy strategy in the implementation of optimum model of intensive rice cultivation at technical irrigated rice field by Integrated Crop Management (ICM) with low methane emission sustainably. This research used split plot design. The treatment of irrigation systems as the main split plot factor is intermittent irrigation and continuous system (flooded) and fertilization as sub plot factor which is fertilization treatment are applied, based on the Recommendation of the Minister of Agriculture No. 40/2007 and based on laboratory analysis recommendation with 8 levels of fertilization treatment with 3 replications. Data analysis for soil quality, water, methane emissions, production and rice productivity are done by analysis of variance (ANOVA) and for the analysis of production, productivity and the methane emission are continued into Duncan Multiple Range Test (DMRT) test. Further sustainability analysis of the RAPFISH modification is called Rapfarm (Rapid Appraisal for Farming) by using the multidimensional scaling (MDS) method, to arrange the scenario is used dynamic model systems approach. The result of study showed that intensive rice cultivation by increasing of planting intensity did not reduce soil and water quality and methane emission can be pushed until 66,05%. Cultivation of intensive rice by increasing of planting season up to four planting seasons in a year by ICM approach can increase rice production and productivity up to 30% and also increase farmer’s income significantly. Optimum Model of intensive rice cultivation is by planting rice for four times a year with the planting pattern of rice-rice-rice-rice by using ICM system especially by using intermittent irrigation system and fertilization appropriate for plant nutrients (recommendation from result of laboratory analysis with the dosage 100% plus probiotic). The value of methane with optimum model application can be reduced significantly from 218.826.889,43 kg CH4 to 397.181,03 kg CH4 in 2030. The value of sustainable index of optimum model of intensive rice cultivation has range between 42,84-66,54 (included in the category of sufficiency) and the result of statistical test showed that RAP-INLASIT-IP 400 method is good enough to be used as one of the devices to evaluate the sustainability implementation optimum model of intensive rice cultivation on technical irrigated rice field. 098106004
- University of Sumatera Utara Indonesia
- University of North Sumatra Indonesia
Intensive Rice Cultivation, Sustainability, Optimum, Methane, Model
Intensive Rice Cultivation, Sustainability, Optimum, Methane, Model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
