Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2012
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating the Marginal Land Resources Suitable for Developing <em>Pistacia chinensis</em>-Based Biodiesel in China

Authors: Lu Lu; Dong Jiang; Dafang Zhuang; Yaohuan Huang;

Evaluating the Marginal Land Resources Suitable for Developing <em>Pistacia chinensis</em>-Based Biodiesel in China

Abstract

Bio-energy from energy plants is expected to play an increasing role in the future energy system, with benefits in terms of reducing greenhouse gas emissions and improving energy security. <em>Pistacia chinensis</em> is believed to be one of the most promising non-food input for biodiesel production. This study focused on the marginal land availability for developing <em>Pistacia chinensis-</em>based bioenergy in China. The spatial distribution, quality and total amount of marginal land resources suitable for cultivating <em>Pistacia chinensis</em> were identified with multiple datasets (natural habitat, remote sensing-derived land use, meteorological and soil data) and geoinformatic techniques. The results indicate that the area of marginal land exploitable for <em>Pistacia chinensis</em> plantations in China is 19.90 million hectares, which may produce approximately 56.85 million tons of biodiesel each year. The spatial variation of both marginal land resources and biodiesel potential are also presented. The results can be useful for national and regional bio-energy planning.

Keywords

Technology, marginal land, T, biodiesel, &lt;em&gt;Pistacia chinensis&lt;/em&gt;

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold