
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental evaluation of attenuator WEC in a laboratory wave tank

The marine and ocean energies are part of renewable energy that Wave energy converters (WECs) are used to extract them. Experimental modeling will be useful in evaluating their performance. In this research, the experimental model of an attenuator WEC is built in the Sea-Based Energy Research Group of the Babol Noshirvani University of Technology, and its performance is studied and evaluated in the wave tank of the university by applying the sea waves conditions. In this evaluation, the effects of wave amplitude and wave period on the average and maximum net power of the Wavestar system are investigated. According to the results, it was observed that in larger wave amplitudes (13 to 15), at 35 and 25 rpm, the maximum net power was close to each other and was 36.7 (Watts) and 31(Watts), respectively. Due to the irregular wave and possible damage to the system at 35 rpm, the wave amplitude of 15 and the speed of 25 rpm are chosen as the optimal mode for better performance of the system.
Naval architecture. Shipbuilding. Marine engineering, VM1-989, wave amplitude, wave tank, average and maximum power, wavestar wec, experimental modeling
Naval architecture. Shipbuilding. Marine engineering, VM1-989, wave amplitude, wave tank, average and maximum power, wavestar wec, experimental modeling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
