Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Zoologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Zoology
Article . 2011
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Host-parasite interactions under extreme climatic conditions

Authors: J. MARTINEZ, S. MERINO;

Host-parasite interactions under extreme climatic conditions

Abstract

The effect that climatic changes can exert on parasitic interactions represents a multifactor problem whose results are difficult to predict. The actual impact of changes will depend on their magnitude and the physiological tolerance of affected organisms. When the change is considered extreme (i.e. unusual weather events that are at the extremes of the historical distribution for a given area), the probability of an alteration in an organisms’ homeostasis increases dramatically. However, factors determining the altered dynamics of host-parasite interactions due to an extreme change are the same as those acting in response to changes of lower magnitude. Only a deep knowledge of these factors will help to produce more accurate predictive models for the effects of extreme changes on parasitic interactions. Extreme environmental conditions may affect pathogens directly when they include free-living stages in their life-cycles and indirectly through reduced resource availability for hosts and thus reduced ability to produce efficient anti-parasite defenses, or by effects on host density affecting transmission dynamics of diseases or the frequency of intraspecific contact. What are the consequences for host-parasite interactions? Here we summarize the present knowledge on three principal factors in determining host-parasite associations; biodiversity, population density and immunocompetence. In addition, we analyzed examples of the effects of environmental alteration of anthropogenic origin on parasitic systems because the effects are analogous to that exerted by an extreme climatic change [Current Zoology 57 (3): 390–405, 2011].

Keywords

Parasite-host interactions, Biodiversity, Pollution, QL1-991, Climate change, Population density, Immunocompetence, Zoology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold