Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ علوم و مهندسی آبیاریarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of Hydro-Climatic Variables by AOGCMs, Evaluating the Range of Changes in Variables, Due to Climate Change, in Upper Dez (Dez Oliya) Basin

Authors: Hojat Taban; Narges Zohrabi; Ali Reza Nikbakht Shahbazi;

Simulation of Hydro-Climatic Variables by AOGCMs, Evaluating the Range of Changes in Variables, Due to Climate Change, in Upper Dez (Dez Oliya) Basin

Abstract

Climate change, in addition to increasing temperature, causes changes in the duration, intensity, form, and timing of rainfall in different parts of the Earth, which can cause droughts and floods. It also changes the volume, duration, and runoff duration, which will bring about many developments and changes in the water-resource management (Kamal and Massah Bavani, 2009). In order to reduce inconsistencies, studying the impacts of climate change on water resources is necessary. One of the most widely used models for these future studies is Atmosphere-ocean General Circulation Models (AOGCMs) (Wilby and Harris, 2006). In general, most studies present a high degree of uncertainty as a result of using AOGCMs in the simulation of climate change and hydrology parameters. the outputs of simulated water-resource models under climate change could be relied on when the uncertainties are taken into account at all stages (Semenov and Stratonovitch, 2010). In order to innovate the research method, in this study 10 AOGCMs under three greenhouse gas emission scenarios (A1B, A2, and B1) were used in the simulated range of hydro-climatic variables through climatic models and downscaling methods in the Dez Oliya basin during 2040-2069. In Summary, when reviewing the range of hydro-climatic variable changes in the future period, it could be observed that the uncertainty of AOGCMs under all three emission scenarios is greater than the downscaling methods.

Keywords

downscaling, Hydraulic engineering, TC801-978, climate model, Irrigation engineering. Reclamation of wasteland. Drainage, climate change, emission scenario, uncertainty, TC1-978

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold