Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ نشریه مهندسی دریاarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
نشریه مهندسی دریا
Article . 2016
Data sources: DOAJ

Investigation of WaveStar Energy Converter Performance in Caspian Sea Using Regular Wave and Froude-Krylov Force

Authors: Pooya Yoosefi Khiabani; Mohammad Amin Abbaszadeh; Alireza Khorshid; Mir Mohammad Ettefagh;

Investigation of WaveStar Energy Converter Performance in Caspian Sea Using Regular Wave and Froude-Krylov Force

Abstract

Caspian Sea is one of the most low-lying areas of the region which is located between latitudes 36.34 and 47.13 degrees north. Its considerable vast area and depth have provided an opportunity to gain renewable energy by different methods. This paper analyzes the performance and mechanism of a floating wave energy converter known as WaveStar, in the above-mentioned sea. Different parts of mechanism are examined under hydrodynamic forces of waves with certain periods and amplitudes. By using the frequency parameters, profile and velocity of the waves; and solving the governing dynamic equations for the model, the vibration response of system has been derived. The main part of this study is the investigation of the effect of changing the arm length, float diameter, wave period and wave amplitude on the structure using regular wave with Froude-Krylov force.

Keywords

regular waves, Naval architecture. Shipbuilding. Marine engineering, VM1-989, vibration response, hydrodynamic forces, caspian sea, wavestar energy converter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold