Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Biogeosciences
Article . 2014 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Biogeosciences
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2014
Data sources: IRIS Cnr
CNR ExploRA
Article . 2014
Data sources: CNR ExploRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem

Authors: Walter C. Oechel; Walter C. Oechel; Aram Kalhori; C. A. Laskowski; George Burba; Beniamino Gioli;

Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem

Abstract

AbstractThe functioning of Arctic ecosystems is not only critically affected by climate change, but it also has the potential for major positive feedback on climate. There is, however, relatively little information on the role, patterns, and vulnerabilities of CO2 fluxes during the nonsummer seasons in Arctic ecosystems. Presented here is a year‐round study of CO2 fluxes in an Alaskan Arctic tussock tundra ecosystem, and key environmental controls on these fluxes. Important controls on fluxes vary by season. This paper also presents a new empirical quantification of seasons in the Arctic based on net radiation. The fluxes were computed using standard FluxNet methodology and corrected using standard Webb‐Pearman‐Leuning density terms adjusted for influences of open‐path instrument surface heating. The results showed that the nonsummer season comprises a significant source of carbon to the atmosphere. The summer period was a net sink of 24.3 g C m−2, while the nonsummer seasons released 37.9 g C m−2. This release is 1.6 times the summer uptake, resulting in a net annual source of +13.6 g C m−2 to the atmosphere. These findings support early observations of a change in this particular region of the Arctic from a long‐term annual sink of CO2 to an annual source from the terrestrial ecosystem and soils to the atmosphere. The results presented here demonstrate that nearly continuous observations may be required in order to accurately calculate the annual net ecosystem CO2 exchange of Arctic ecosystems and to build predictive understanding that can be used to estimate, with confidence, Arctic fluxes under future conditions.

Countries
Italy, Italy, United States
Keywords

seasons, 550, Natural Resources Management and Policy, 551, WPL correction, climate change, Natural Resources and Conservation, eddy covariance, CO2, Other Environmental Sciences, Environmental Sciences, heating correction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 1%
hybrid