Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions

Authors: Justin E. Bagley; Seongeun Jeong; Xinguang Cui; Sally Newman; Jingsong Zhang; Chad Priest; Mixtli Campos‐Pineda; +6 Authors

Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions

Abstract

AbstractAtmospheric inverse estimates of gas emissions depend on transport model predictions, hence driving a need to assess uncertainties in the transport model. In this study we assess the uncertainty in WRF‐STILT (Weather Research and Forecasting and Stochastic Time‐Inverted Lagrangian Transport) model predictions using a combination of meteorological and carbon monoxide (CO) measurements. WRF configurations were selected to minimize meteorological biases using meteorological measurements of winds and boundary layer depths from surface stations and radar wind profiler sites across California. We compare model predictions with CO measurements from four tower sites in California from June 2013 through May 2014 to assess the seasonal biases and random errors in predicted CO mixing ratios. In general, the seasonal mean biases in boundary layer wind speed (< ~ 0.5 m/s), direction (< ~ 15°), and boundary layer height (< ~ 200 m) were small. However, random errors were large (~1.5–3.0 m/s for wind speed, ~ 40–60° for wind direction, and ~ 300–500 m for boundary layer height). Regression analysis of predicted and measured CO yielded near‐unity slopes (i.e., within 1.0 ± 0.20) for the majority of sites and seasons, though a subset of sites and seasons exhibit larger (~30%) uncertainty, particularly when weak winds combined with complex terrain in the South Central Valley of California. Looking across sites and seasons, these results suggest that WRF‐STILT simulations are sufficient to estimate emissions of CO to up to 15% on annual time scales across California.

Country
United States
Keywords

550, atmospheric transport, Climate, 551, 333, carbon monoxide, Atmospheric Sciences, Meteorology, greenhouse gas, meteorology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
bronze