
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations

doi: 10.1002/2016jd025617
handle: 10044/1/76374
AbstractWe report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground‐based observations of radiocarbon and total CO2, together with column‐mean CO2 observations from NASA's Orbiting Carbon Observatory (OCO‐2). The work includes an initial examination of statistical uncertainties in prior models for CO2 exchange, in radiocarbon‐based fossil fuel CO2 measurements, in OCO‐2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find that flask measurements of radiocarbon and total CO2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO‐2 observations yields posterior uncertainties in monthly‐mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom‐up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.
- Lawrence Berkeley National Laboratory United States
- Goddard Space Flight Center United States
- National Aeronautics and Space Administration United States
- Arizona State University United States
- Lawrence Berkeley National Laboratory United States
biosphere, FLUXES, Science & Technology, 550, emissions, carbon dioxide, PERFORMANCE, simulation, 333, inversion, CO2 EMISSIONS, Physical Sciences, Meteorology & Atmospheric Sciences, (CO2)-C-14, fossil fuel, MISSION
biosphere, FLUXES, Science & Technology, 550, emissions, carbon dioxide, PERFORMANCE, simulation, 333, inversion, CO2 EMISSIONS, Physical Sciences, Meteorology & Atmospheric Sciences, (CO2)-C-14, fossil fuel, MISSION
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
