Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao AIChE Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AIChE Journal
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liquid Fuels from Alternative Carbon Sources Minimizing Carbon Dioxide Emissions

Authors: Bilal Patel; Baraka Celestin Sempuga; Benjamin J. Glasser; David Glasser; Matthew J. Metzger; James Alistair Fox; Diane Hildebrandt;

Liquid Fuels from Alternative Carbon Sources Minimizing Carbon Dioxide Emissions

Abstract

The energy needs of the world continue to grow, as does the resulting environmental impact. Policy makers continue to call for alternative energies to replace today's petroleum‐based liquid fuels. However, liquid fuels have significant advantages, and it is probably unwise to abandon the existing infrastructure without appropriately exploring alternatives to lessen the environmental burden of producing liquid fuels. Biomass and coal are often proposed as alternatives to petroleum‐based carbon sources, but those processes lose a significant amount of their potential product to unwanted carbon dioxide emissions. However, combining biomass and coal with cleaner natural gas yields processes with less environmental impact to produce liquid fuels with small, zero, or even negative carbon dioxide emissions. Our process synthesis approach is applied to commonly encountered liquid fuel production methods to identify promising routes and to establish feasibility limits on those less promising alternatives. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2062–2078, 2013

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Average