Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Time‐dependent life cycle assessment of microalgal biorefinery co‐products

Authors: Montazeri, Mahdokht; Soh, Lindsay; Perez-Lopez, Paula; Zimmerman, Julie B; Eckelman, Matthew J;

Time‐dependent life cycle assessment of microalgal biorefinery co‐products

Abstract

AbstractMicroalgae can serve as a highly productive biological feedstock for fuels and chemicals. The lipid fraction has been the primary target of research, but numerous assessments have found that valorization of co‐products is essential to achieve economic and environmental goals. The relative proportion of co‐products depends on the biomolecular composition of algae at the time of harvesting. In the present study, the productivity of lipid, starch, and protein fractions were shown through growth experiments to vary widely with species, feeding regime, and harvesting period. Four algae species were cultivated under nitrogen‐replete and ‐deplete conditions and analyzed at 3‐day intervals. Dynamic growth results were then used for life cycle assessment using the US Department of Energy's GREET model to determine optimal growth scenarios that minimize life cycle greenhouse gas (GHG) emissions, eutrophication, and cumulative energy demand (CED), while aiming for an energy return on investment (EROI) greater than unity. Per kg of biodiesel produced, C. sorokiniana in N‐replete conditions harvested at 12 days was most favorable for GHG emissions and CED, despite having a lipid content of <20%. N. oculata in N‐deplete conditions with a 12‐day harvesting period had the lowest life cycle eutrophication impacts, driven by efficient nutrient cycling and valorization of microalgal protein and anaerobic digester residue co‐products. Results indicate that growth cycle times that maximize a single fraction do not necessarily result in the most favorable environmental performance on a life cycle basis, underscoring the importance of designing biorefinery systems that ‐simultaneously optimize for lipid and non‐lipid fractions. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

Country
France
Keywords

[SDV.BIO]Life Sciences [q-bio]/Biotechnology, [SDE.IE]Environmental Sciences/Environmental Engineering, fractional productivity, [ SDV.BIO ] Life Sciences [q-bio]/Biotechnology, co-product valorization, [ SDE.IE ] Environmental Sciences/Environmental Engineering, life cycle assessment, microalgal biofuel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%