Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combined effect of transglutaminase and phenolic extract of Spirulina platensis in films based on starch and gelatin recovered from chrome III tanned leather waste

Authors: Marieli Rosseto; Cesar Vinicius Toniciolli Rigueto; Daniela Dal Castel Krein; Lillian Avila Massuda; Naiana Pereira Balbé; Luciane Maria Colla; Aline Dettmer;

Combined effect of transglutaminase and phenolic extract of Spirulina platensis in films based on starch and gelatin recovered from chrome III tanned leather waste

Abstract

AbstractThis study aimed to enhance the properties of films produced from corn starch and gelatin recovered from chrome (III) tanned leather waste (CTLW) through the addition of transglutaminase enzyme (TGase) and phenolic extracts from Spirulina platensis (PESP). Mechanical, chemical, physical, and biological properties were analyzed and compared with control films elaborated in the same conditions but with commercial gelatin (COM). The possibility of applying the film as soil cover was analyzed through its degradation when exposed to the surface of a garden soil for a period of 60 days. The TGase caused a reduction of 50% in solubility in water, and 2% in the water vapor permeability (PWV), and PESP caused a reduction of 17% in solubility and 15% in PWV. The combined effect of TGase and PESP was a 60% reduction in solubility, 75% reduction in PWV, inhibition of contamination by Aspergillus niger, and reduction of film degradation on soil covering, evidenced by stability analysis using Fourier transform infrared (FTIR) spectrometry. The combined effect of TGase with PESP led to an improvement in the characteristics of the film produced with CTLW gelatin, rendering its application possible due to a higher lifespan, contributing to environmental sustainability and diminishing leather waste disposal at landfills. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd

Powered by OpenAIRE graph
Found an issue? Give us feedback