Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable pilot‐scale production of a Salicornia oil, its conversion to certified aviation fuel, and techno‐economic analysis of the related biorefinery

Authors: Paco Laveille; Joao Uratani; Jose G. G. Barron; Michael Brodeur‐Campbell; Nilesh R. Chandak; Abraham George; Stephane Morin; +2 Authors

Sustainable pilot‐scale production of a Salicornia oil, its conversion to certified aviation fuel, and techno‐economic analysis of the related biorefinery

Abstract

AbstractThe 2 ha pilot‐plant Seawater Energy and Agriculture System (SEAS) in Abu Dhabi, United Arab Emirates (UAE), integrates aquaculture ponds, which produce fish and shrimp, with fields of Salicornia and mangrove used as a natural filter to clean the waste seawater from the ponds. The SEAS is a sustainable solution that addresses the food security issues of countries with large deserts or arid regions. At the same time, it produces economically viable fuels from biomass, using non‐arable lands and non‐drinkable water. After harvesting and pressing Salicornia seeds (2 t ha−1 year−1), a custom‐made process serves to pre‐treat the vegetable oil (0.7 t ha−1 year−1) containing 85 wt% C18 and 10 wt% C16 fatty acids as triglycerides. The first step of the UOP Ecofining® process produces an oil composed of linear C15‐C18 alkanes. Analytical data suggest the oil feed converts at 60 wt% by hydrodeoxygenation and at 40 wt% through decarboxylation/decarbonylation. The subsequent hydrocracking/isomerization step provided 3.4 wt% C1–C4, 34.8 wt% green naphtha, 47.5 wt% sustainable aviation fuel (SAF), and 14.2 wt% green diesel. After distillation, the SAF has been certified following ASTM D7566 before being blended with conventional jet fuel and used successfully on a commercial passenger flight in January 2019. The techno‐economic study shows that the biorefinery part is economically sustainable when reaching a production scale of 900bbd, required for a SEAS surface of 20 000 ha. At this scale, expected revenue and conversion costs per MT of feed are, respectively, $589 and $290. The resulting benefit, associated with a CAPEX of $115M, would lead to a payback time of 6.9 years. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
bronze