Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biotechnology and Bi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology and Bioengineering
Article . 2005 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge

Authors: Pereira, M. A.; Pires, O. C.; Mota, M.; Alves, M. M.;

Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge

Abstract

Palmitic acid was the main long chain fatty acids (LCFA) that accumulated onto the anaerobic sludge when oleic acid was fed to an EGSB reactor. The conversion between oleic and palmitic acid was linked to the biological activity. When palmitic acid was fed to an EGSB reactor it represented also the main LCFA that accumulated onto the sludge. The way of palmitic acid accumulation was different in the oleic and in the palmitic acid fed reactors. When oleic acid was fed, the biomass-associated LCFA (83% as palmitic acid) were mainly adsorbed and entrapped in the sludge that became "encapsulated" by an LCFA layer. However, when palmitic acid was fed, the biomass-associated LCFA (the totality as palmitic acid) was mainly precipitated in white spots like precipitates in between the sludge, which remained "non-encapsulated." The two sludges were compared in terms of the specific methanogenic activity (SMA) in the presence of acetate, propionate, butyrate, and H(2)CO(2), before and after the mineralization of similar amounts of biomass-associated LCFA (4.6 and 5.2 g COD-LCFA/g of volatile suspended solids (VSS), for the oleic and palmitic acid fed sludge, respectively). The "non-encapsulated," sludge exhibited a considerable initial methanogenic activity on all the tested substrates, with the single exception of butyrate. However, with the "encapsulated" sludge only methane production from ethanol and H(2)/CO(2) was detected, after a lag phase of about 50 h. After mineralization of the biomass-associated LCFA, both sludges exhibited activities of similar order of magnitude in the presence of the same individual substrates and significantly higher than before. The results evidenced that LCFA accumulation onto the sludge can create a physical barrier and hinder the transfer of substrates and products, inducing a delay on the initial methane production. Whatever the mechanism, metabolic or physical, that is behind this inhibition, it is reversible, being eliminated after the depletion of the biomass-associated LCFA.

Country
Portugal
Related Organizations
Keywords

Science & Technology, Chromatography, Gas, Time Factors, Sewage, Methanogenic activity, Fatty Acids, Palmitic Acid, Biological Transport, Acetates, LCFA, Oxygen, Butyrates, Bioreactors, Microscopy, Electron, Scanning, Biomass, Propionates, Methane, Transport limitations, Oleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    260
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
260
Top 1%
Top 1%
Top 10%
Green
bronze