Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology and Bioengineering
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M‐M33 grown with LEDs of different colors

Authors: Fabian Abiusi; Giacomo Sampietro; Giovanni Marturano; BIONDI, NATASCIA; RODOLFI, LILIANA; Massimo D'Ottavio; TREDICI, MARIO;

Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M‐M33 grown with LEDs of different colors

Abstract

ABSTRACTThe effect of light quality on cell size and cell cycle, growth rate, productivity, photosynthetic efficiency and biomass composition of the marine prasinophyte Tetraselmis suecica F&M‐M33 grown in 2‐L flat panel photobioreactors illuminated with light emitting diodes (LEDs) of different colors was investigated. Biomass productivity and photosynthetic efficiency were comparable between white and red light, while under blue and green light productivity decreased to less than half and photosynthetic efficiency to about one third. Differences in cell size and number correlated with the cell cycle phase. Under red light cells were smaller and more motile. Chlorophyll content was strongly reduced with red and enhanced with blue light, while carotenoids and gross biomass composition were not affected by light quality. The eicosapentaenoic acid content increased under red light. Red light can substitute white light without affecting productivity of T. suecica F&M‐M33, leading to smaller and more motile cells and increased eicosapentaenoic acid content. Red LEDs can thus be profitably used for the production of this microalga for aquaculture. Biotechnol. Biotechnol. Bioeng. 2014;111: 956–964. © 2013 Wiley Periodicals, Inc.

Country
Italy
Keywords

Analysis of Variance, Color, Photobioreactors, Eicosapentaenoic Acid, Chlorophyta, Tetraselmis, LED, Biomass, Photosynthesis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 1%
Top 10%
Top 10%