Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotechnology and Bi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology and Bioengineering
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing the influence of biofilm surface roughness on mass transfer by combining optical coherence tomography and two‐dimensional modeling

Authors: Michael Wagner; Susanne Lackner; Susanne Lackner; Harald Horn; Chunyan Li;

Assessing the influence of biofilm surface roughness on mass transfer by combining optical coherence tomography and two‐dimensional modeling

Abstract

ABSTRACTImaging and modeling are two major approaches in biofilm research to understand the physical and biochemical processes involved in biofilm development. However, they are often used separately. In this study we combined these two approaches to investigate substrate mass transfer and mass flux. Cross‐sectional biofilm images were acquired by means of optical coherence tomography (OCT) for biofilms grown on carriers. A 2D biofilm model was developed incorporating OCT images as well as a simplified biofilm geometry serving as structural templates. The model incorporated fluid flow, substrate transfer and biochemical conversion of substrates and simulated the hydrodynamics surrounding the biofilm structure as well as the substrate distribution. The method allowed detailed analysis of the hydrodynamics and mass transfer characteristics at the micro‐scale. Biofilm activity with respect to substrate fluxes was compared among different combinations of flow, substrate availability and biomass density. The combined approach revealed that higher substrate fluxes at heterogeneous biofilm surface under two conditions: pure diffusion and when high flow velocity along the biofilms surface renders the whole liquid‐biofilm interface to be highly active. In‐between the two conditions the substrate fluxes across the surface of smooth biofilm geometry were higher than that of the heterogeneous biofilms. Biotechnol. Bioeng. 2016;113: 989–1000. © 2015 Wiley Periodicals, Inc.

Keywords

Surface Properties, Bacterial Physiological Phenomena, Models, Biological, Diffusion, Bioreactors, Biofilms, Hydrodynamics, Biomass, Algorithms, Tomography, Optical Coherence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research