
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reduced modeling and state observation of an activated sludge process

doi: 10.1002/btpr.178
pmid: 19496181
AbstractThis article first proposes a reduction strategy of the activated sludge process model with alternated aeration. Initiated with the standard activated sludge model (ASM1), the reduction is based on some biochemical considerations followed by linear approximations of nonlinear terms. Two submodels are then obtained, one for the aerobic phase and one for the anoxic phase, using four state variables related to the organic substrate concentration, the ammonium and nitrate‐nitrite nitrogen, and the oxygen concentration. Then, a two‐step robust estimation strategy is used to estimate both the unmeasured state variables and the unknown inflow ammonium nitrogen concentration. Parameter uncertainty is considered in the dynamics and input matrices of the system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009
- Universidad de San Buenaventura, Bogota Colombia
- University of the Andes Venezuela
- University of Toulouse France
- Universidad de San Buenaventura, Bogota Colombia
- University of the Andes Venezuela
Bacteria, Sewage, Models, Biological, Kinetics, Biodegradation, Environmental, Biomass
Bacteria, Sewage, Models, Biological, Kinetics, Biodegradation, Environmental, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
