Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemElectroChemarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemElectroChem
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Oxygen Transport in Cathode Catalyst Layer of Low‐Pt‐Loaded Fuel Cells

Authors: Choo, MJ Choo, Min-Ju; Oh, KH Oh, Keun-Hwan; Park, JK Park, Jung-Ki; Kim, HT Kim, Hee-Tak;

Analysis of Oxygen Transport in Cathode Catalyst Layer of Low‐Pt‐Loaded Fuel Cells

Abstract

AbstractOxygen transport resistance, one of the causes of large polarization in the cathode catalyst layer (CL), is intensified in low‐Pt‐loaded polymer electrolyte membrane fuel cells (PEMFCs). In order to explore operation strategies and cathode design to mitigate the large oxygen transport resistance of low‐Pt‐loaded fuel cells, the influence of operating conditions and ionomer structure on oxygen transport in the CL is investigated. Remarkably, the oxygen transport resistance data for different operation conditions and ionomer structures lie on a single curve when they are plotted as a function of the water partial pressure of the feed. At a high water partial pressure of 80 kPa, the oxygen transport resistance of the low‐Pt‐loaded CL (0.14±0.03 mg−Pt cm−2) becomes comparable to that of the high‐Pt‐loaded CL (0.40±0.04 mg−Pt cm−2) as a result of the opposing influences of Pt loading on Knudsen and ionomer film diffusion. This emphasizes the importance of the water uptake in the ionomer film for reducing oxygen transport in the CL. From a fuel cell design perspective, the operation strategy and CL design to maintain high water partial pressure in the cathode CL are extremely important for realizing low‐Pt‐loaded fuel cells.

Country
Korea (Republic of)
Keywords

SHORT-SIDE-CHAIN; PERFLUOROSULFONIC ACID IONOMERS; HIGH-TEMPERATURE OPERATION; EQUIVALENT-WEIGHT; GAS-DIFFUSION; MEMBRANE; RESISTANCE; PERFORMANCE; NAFION; HYDROGEN, 660

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold