Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemSusChem
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemSusChem
Article . 2012
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide

Authors: Bensaid S; CENTI, Gabriele; Garrone E; PERATHONER, Siglinda; Saracco G.;

Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide

Abstract

AbstractThe development of an “artificial leaf” that collects energy in the same way as a natural one is one of the great challenges for the use of renewable energy and a sustainable development. To avoid the problem of intermittency in solar energy, it is necessary to design systems that directly capture CO2 and convert it into liquid solar fuels that can be easily stored. However, to be advantageous over natural leaves, it is necessary that artificial leaves have a higher solar energy‐to‐chemical fuel conversion efficiency, directly provide fuels that can be used in power‐generating devices, and finally be robust and of easy construction, for example, smart, cheap and robust. This review discusses the recent progress in this field, with particular attention to the design and development of ‘artificial leaf’ devices and some of their critical components. This is a very active research area with different concepts and ideas under investigation, although often the validity of the considered solutions it is still not proven or the many constrains are not fully taken into account, particularly from the perspective of system engineering, which considerably limits some of the investigated solutions. It is also shown how system design should be included, at least at a conceptual level, in the definition of the artificial leaf elements to be investigated (catalysts, electrodes, membranes, sensitizers) and that the main relevant aspects of the cell engineering (mass/charge transport, fluid dynamics, sealing, etc.) should be also considered already at the initial stage because they determine the design and the choice between different options. For this reason, attention has been given to the system‐design ideas under development instead of the molecular aspects of the O2‐ or H2‐evolution catalysts. However, some of the recent advances in these catalysts, and their use in advanced electrodes, are also reported to provide a more complete picture of the field.

Country
Italy
Keywords

Carbon Dioxide, artificial leaves; solar fuel; artificial photosynthesis, Solar Energy, Renewable Energy, Photosynthesis, Cell Engineering, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    206
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
206
Top 1%
Top 10%
Top 1%