- home
- Search
- Energy Research
- nano-technology
- Energy Research
- nano-technology
description Publicationkeyboard_double_arrow_right Article , Journal 2021 BulgariaPublisher:Elsevier BV Authors: Silviya Boycheva; Denitza Zgureva; Hristina Lazarova; Margarita Popova;pmid: 33450419
The combustion of coal in Thermal Power Plants generates fine dust particles (coal fly ash, CFA), which are collected from the flue gas streams and deposited as solid wastes. One of the technologically reliable solutions for utilization of CFA is its alkaline conversion into zeolites. The present study focuses on the influence of calcium content in CFA on the chemical and phase composition, morphology and surface properties of coal fly ash zeolites. Comparative studies of the capacity of zeolites of Na-X and Na-Ca-X types from coal fly ash to capture carbon emissions under static and dynamic conditions have been performed. The present study answers a key question from a practical point of view, how does moisture in flue gases affect the adsorption of carbon dioxide on zeolites. The development of efficient adsorbents from CFA with varying composition will contribute to a number of environmental benefits and to the development of efficient CO2 capture technologies in the context of the circular economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.129505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.129505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCZhongshun Yuan; Hongwei Li; Hongwei Li; Chunbao (Charles) Xu; Qin Wei;Abstract Bio-based polyurethane (BPU) foams were successfully prepared using hydrothermally liquefied wheat straw (WS) to substitute a mass fraction of up to 50% of polyols. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize four process parameters: NCO/OH molar ratio, loading of crosslinking agent (glycerol), loading of catalyst (a mixture of triethylene diamine, stannous octoate, and triethanolamine), and loading of blowing agent (water) for the maximum compression strength of the rigid BPU foams. With the quadratic orthogonal regression model, verified by experimentation, the maximum compression strength of approximately 180 kPa was obtained at the following optimal conditions: NCO/OH molar ratio of 1.24:1, glycerol addition of 12.11%, catalyst loading of 0.76%, and blowing agent addition of 1.31% in relation to the total mass of polyols. The BPU foam prepared at the optimal conditions exhibits good thermal conductivity (0.045 Wm−1K−1) and thermal stability, comparable to those of a reference foam prepared with 100% PPG400.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Helio R. Moutinho; Ramesh Dhere; Chun-Sheng Jiang; Mowafak Al-Jassim;We have investigated the microelectrical properties of CdTe thin films using scanning Kelvin probe force microscopy (SKPFM) and scanning spreading resistance microscopy (SSRM). Two films with the configurations of substrate and superstrate were subjected to the characterization studies. The electrical potential and resistance were properly mapped with the substrate film but not with the superstrate film because the underlying CdS/CdTe junction largely impacted the characterizations. The higher SKPFM potential on grain boundaries (GBs) of the substrate film than on the grain surface indicates positively charged GBs and upward band bending around the GB; therefore, the GBs are either depleted or inverted. The SSRM resistance mapping on this film shows nonuniformities and features that are associated with the grain structure and facets. However, the GBs do not exhibit distinct characteristic resistance. Comparing the low resistance channel along the GBs of high-performance CIGS films, the SSRM mapping of CdTe supports depletion of the GBs. In SSRM measurement, it is critical to adequately indent the probe to the film, and to apply a bias voltage larger than the onset voltage of the probe/film barrier, so that the contact resistance is minimized and that the local spreading resistance of CdTe film beneath the probe is measured.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2276932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2276932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors: Addin Salihoudin; Anam Asghar; Wan Mohd Ashri Wan Daud; Abdul Aziz Abdul Raman;doi: 10.1002/ep.12468
Microbial fuel cell (MFC) is a sustainable and energy efficient technology, which uses graphite as cathode for hydrogen peroxide (H2O2) production often with simultaneous power production. Nevertheless, slow kinetics of oxygen reduction reaction (ORR) at the surface of graphite often results in poor performance of MFC. In an attempt to improve the performance of MFC for in‐situ H2O2 production, a treatment of graphite cathode using nitric acid was performed. The treatment was conducted in three steps (i) heat treatment at 450°C for 2 h; (ii) acid treatment with concentrated nitric acid for 5 h; and (iii) drying at 120°C for 2 h. After the treatment, four times increase in surface area of treated cathode (GR‐HA) was observed. Energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) analysis revealed the presence of nitrogen and quinone based functional groups on the surface of GR‐HA. Cyclic voltammetric (CV) analysis of GR‐HA cathode further confirmed the production of H2O2 at the peak current value of −3.7 mA and on‐set potential of −0.1 V. Following CV analysis, H2O2 production experiments were performed in a dual chamber MFC using GR‐HA as cathode. Maximum 150 mg/L of H2O2 was produced with simultaneous power production of 36.438 mW/m2. Approximately, 25% increase in both H2O2 and power production was observed in the case of G cathode. Subsequently, Fenton oxidation experiments were performed (with GR‐HA and GR‐CA cathodes) to determine the efficacy of in‐situ produced H2O2. This resulted in an increase of 8.28%, 11.04%, and 31.32% in decolorization, chemical oxygen demand (COD), and Total Organic Carbon (TOC) removal efficiency, respectively. © 2016 American Institute of Chemical Engineers Environ Prog, 36: 382–393, 2017
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, SingaporePublisher:Springer Science and Business Media LLC Fan, Z; Bosman, M; Huang, X; Huang, D; Yu, Y; Ong, K.P; Akimov, Y.A; Wu, L; Li, B; Wu, J; Huang, Y; Liu, Q; Eng Png, C; Lip Gan, C; Yang, P; Zhang, H;AbstractGold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Wei Ma; Xiaofeng Wu; Keke Huang; Meng Wang; Rong Fu; Huanwen Chen; Shouhua Feng;doi: 10.1039/c9se00337a
A controllable planar Fe2O3/WO3 photoanode with an integrated Co(OH)x layer was prepared via an electrospray technique for enhanced PEC performance.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00337a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00337a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Haitao Liu; Fenglian Wang; Liqing Yang; Min Gao; Li Bian; Ming Chong; Xun Chi; Jianming Li; Yonghui Zhai; X. F. Duan; Jiadong Xu;A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7mA/cm(2), but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystal line silicon wafers with only conventional background impurities. (c) 2004 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 LuxembourgPublisher:Institute of Electrical and Electronics Engineers (IEEE) Hönes, C.; Hackenberg, J.; Keller, R.; Zweigart, S.; Fuchs, A.; Siebentritt, Susanne;In the search for a nontoxic replacement of the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se) $_\mathrm{2}$ based solar cells, chemically deposited Zn(O,S) thin films are a most promising choice. In this paper, we address the usually slow deposition speed of Zn(O,S) in a newly developed ammonia-free chemical bath process, resulting in a deposition of 30 nm in 3 min with good homogeneity on 30 cm × 30 cm sized substrates. Solar cells with buffer layers prepared from this process match the efficiency of CdS reference cells. In a second step, we address the light-soaking post-treatment, still needed for maximum efficiencies. By addition of aluminum to the deposition process, the initial efficiencies can be increased slightly. With the addition of boron, the light-soaking post-treatment is rendered unnecessary, while maintaining high efficiencies above 15%, surpassing reference cells with CdS buffer.
IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Miquel Costas; Julio Lloret-Fillol;The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.23&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.23&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Fritz Kirscht; Fabien Gibaja; Christian Möller; Kevin Lauer; Til Bartel;AbstractIron-acceptor (FeAc) pair association has been studied in compensated n-type silicon. A dynamic approach, based on the charge carrier recombination rates over the Fei trap level, leads to an explanation of the observed FeAc pairing reaction in compensated n-type silicon and extends the understanding of FeAc pairing kinetics. Association kinetics was used to measure a height dependent acceptor concentration profile. Even in compensated n-type silicon good agreement with expected concentrations is found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 BulgariaPublisher:Elsevier BV Authors: Silviya Boycheva; Denitza Zgureva; Hristina Lazarova; Margarita Popova;pmid: 33450419
The combustion of coal in Thermal Power Plants generates fine dust particles (coal fly ash, CFA), which are collected from the flue gas streams and deposited as solid wastes. One of the technologically reliable solutions for utilization of CFA is its alkaline conversion into zeolites. The present study focuses on the influence of calcium content in CFA on the chemical and phase composition, morphology and surface properties of coal fly ash zeolites. Comparative studies of the capacity of zeolites of Na-X and Na-Ca-X types from coal fly ash to capture carbon emissions under static and dynamic conditions have been performed. The present study answers a key question from a practical point of view, how does moisture in flue gases affect the adsorption of carbon dioxide on zeolites. The development of efficient adsorbents from CFA with varying composition will contribute to a number of environmental benefits and to the development of efficient CO2 capture technologies in the context of the circular economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.129505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.129505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCZhongshun Yuan; Hongwei Li; Hongwei Li; Chunbao (Charles) Xu; Qin Wei;Abstract Bio-based polyurethane (BPU) foams were successfully prepared using hydrothermally liquefied wheat straw (WS) to substitute a mass fraction of up to 50% of polyols. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize four process parameters: NCO/OH molar ratio, loading of crosslinking agent (glycerol), loading of catalyst (a mixture of triethylene diamine, stannous octoate, and triethanolamine), and loading of blowing agent (water) for the maximum compression strength of the rigid BPU foams. With the quadratic orthogonal regression model, verified by experimentation, the maximum compression strength of approximately 180 kPa was obtained at the following optimal conditions: NCO/OH molar ratio of 1.24:1, glycerol addition of 12.11%, catalyst loading of 0.76%, and blowing agent addition of 1.31% in relation to the total mass of polyols. The BPU foam prepared at the optimal conditions exhibits good thermal conductivity (0.045 Wm−1K−1) and thermal stability, comparable to those of a reference foam prepared with 100% PPG400.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Helio R. Moutinho; Ramesh Dhere; Chun-Sheng Jiang; Mowafak Al-Jassim;We have investigated the microelectrical properties of CdTe thin films using scanning Kelvin probe force microscopy (SKPFM) and scanning spreading resistance microscopy (SSRM). Two films with the configurations of substrate and superstrate were subjected to the characterization studies. The electrical potential and resistance were properly mapped with the substrate film but not with the superstrate film because the underlying CdS/CdTe junction largely impacted the characterizations. The higher SKPFM potential on grain boundaries (GBs) of the substrate film than on the grain surface indicates positively charged GBs and upward band bending around the GB; therefore, the GBs are either depleted or inverted. The SSRM resistance mapping on this film shows nonuniformities and features that are associated with the grain structure and facets. However, the GBs do not exhibit distinct characteristic resistance. Comparing the low resistance channel along the GBs of high-performance CIGS films, the SSRM mapping of CdTe supports depletion of the GBs. In SSRM measurement, it is critical to adequately indent the probe to the film, and to apply a bias voltage larger than the onset voltage of the probe/film barrier, so that the contact resistance is minimized and that the local spreading resistance of CdTe film beneath the probe is measured.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2276932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2276932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors: Addin Salihoudin; Anam Asghar; Wan Mohd Ashri Wan Daud; Abdul Aziz Abdul Raman;doi: 10.1002/ep.12468
Microbial fuel cell (MFC) is a sustainable and energy efficient technology, which uses graphite as cathode for hydrogen peroxide (H2O2) production often with simultaneous power production. Nevertheless, slow kinetics of oxygen reduction reaction (ORR) at the surface of graphite often results in poor performance of MFC. In an attempt to improve the performance of MFC for in‐situ H2O2 production, a treatment of graphite cathode using nitric acid was performed. The treatment was conducted in three steps (i) heat treatment at 450°C for 2 h; (ii) acid treatment with concentrated nitric acid for 5 h; and (iii) drying at 120°C for 2 h. After the treatment, four times increase in surface area of treated cathode (GR‐HA) was observed. Energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) analysis revealed the presence of nitrogen and quinone based functional groups on the surface of GR‐HA. Cyclic voltammetric (CV) analysis of GR‐HA cathode further confirmed the production of H2O2 at the peak current value of −3.7 mA and on‐set potential of −0.1 V. Following CV analysis, H2O2 production experiments were performed in a dual chamber MFC using GR‐HA as cathode. Maximum 150 mg/L of H2O2 was produced with simultaneous power production of 36.438 mW/m2. Approximately, 25% increase in both H2O2 and power production was observed in the case of G cathode. Subsequently, Fenton oxidation experiments were performed (with GR‐HA and GR‐CA cathodes) to determine the efficacy of in‐situ produced H2O2. This resulted in an increase of 8.28%, 11.04%, and 31.32% in decolorization, chemical oxygen demand (COD), and Total Organic Carbon (TOC) removal efficiency, respectively. © 2016 American Institute of Chemical Engineers Environ Prog, 36: 382–393, 2017
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, SingaporePublisher:Springer Science and Business Media LLC Fan, Z; Bosman, M; Huang, X; Huang, D; Yu, Y; Ong, K.P; Akimov, Y.A; Wu, L; Li, B; Wu, J; Huang, Y; Liu, Q; Eng Png, C; Lip Gan, C; Yang, P; Zhang, H;AbstractGold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0bd1r61nData sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10220/46206Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10356/89243Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2015License: © 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Data sources: Digital Repository of NTUeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms8684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Wei Ma; Xiaofeng Wu; Keke Huang; Meng Wang; Rong Fu; Huanwen Chen; Shouhua Feng;doi: 10.1039/c9se00337a
A controllable planar Fe2O3/WO3 photoanode with an integrated Co(OH)x layer was prepared via an electrospray technique for enhanced PEC performance.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00337a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00337a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Haitao Liu; Fenglian Wang; Liqing Yang; Min Gao; Li Bian; Ming Chong; Xun Chi; Jianming Li; Yonghui Zhai; X. F. Duan; Jiadong Xu;A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7mA/cm(2), but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystal line silicon wafers with only conventional background impurities. (c) 2004 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 LuxembourgPublisher:Institute of Electrical and Electronics Engineers (IEEE) Hönes, C.; Hackenberg, J.; Keller, R.; Zweigart, S.; Fuchs, A.; Siebentritt, Susanne;In the search for a nontoxic replacement of the commonly employed CdS buffer layer for Cu(In,Ga)(S,Se) $_\mathrm{2}$ based solar cells, chemically deposited Zn(O,S) thin films are a most promising choice. In this paper, we address the usually slow deposition speed of Zn(O,S) in a newly developed ammonia-free chemical bath process, resulting in a deposition of 30 nm in 3 min with good homogeneity on 30 cm × 30 cm sized substrates. Solar cells with buffer layers prepared from this process match the efficiency of CdS reference cells. In a second step, we address the light-soaking post-treatment, still needed for maximum efficiencies. By addition of aluminum to the deposition process, the initial efficiencies can be increased slightly. With the addition of boron, the light-soaking post-treatment is rendered unnecessary, while maintaining high efficiencies above 15%, surpassing reference cells with CdS buffer.
IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2017Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2669360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Miquel Costas; Julio Lloret-Fillol;The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.23&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.23&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Fritz Kirscht; Fabien Gibaja; Christian Möller; Kevin Lauer; Til Bartel;AbstractIron-acceptor (FeAc) pair association has been studied in compensated n-type silicon. A dynamic approach, based on the charge carrier recombination rates over the Fei trap level, leads to an explanation of the observed FeAc pairing reaction in compensated n-type silicon and extends the understanding of FeAc pairing kinetics. Association kinetics was used to measure a height dependent acceptor concentration profile. Even in compensated n-type silicon good agreement with expected concentrations is found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu