Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Applicati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2019
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2019
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecological Applications
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2019
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ecosystem service change caused by climatological and non‐climatological drivers: a Swiss case study

Authors: Daniela Braun; Alexander Damm; Alexander Damm; Michael E. Schaepman; Felix Kienast; Lars Hein; Reinhard Furrer; +1 Authors

Ecosystem service change caused by climatological and non‐climatological drivers: a Swiss case study

Abstract

AbstractUnderstanding the drivers of ecosystem change and their effects on ecosystem services are essential for management decisions and verification of progress towards national and international sustainability policies (e.g., Aichi Biodiversity Targets, Sustainable Development Goals). We aim to disentangle spatially the effect of climatological and non‐climatological drivers on ecosystem service supply and trends. Therefore, we explored time series of three ecosystem services in Switzerland between 2004 and 2014: carbon dioxide regulation, soil erosion prevention, and air quality regulation. We applied additive models to describe the spatial variation attributed to climatological (i.e., temperature, precipitation and relative sunshine duration) and non‐climatological drivers (i.e., random effects representing other spatially structured processes) that may affect ecosystem service change. Obtained results indicated strong influences of climatological drivers on ecosystem service trends in Switzerland. We identified equal contributions of all three climatological drivers on trends of carbon dioxide regulation and soil erosion prevention, while air quality regulation was more strongly influenced by temperature. Additionally, our results showed that climatological and non‐climatological drivers affected ecosystem services both negatively and positively, depending on the regions (in particular lower and higher altitudinal areas), drivers, and services assessed. Our findings highlight stronger effects of climatological compared to non‐climatological drivers on ecosystem service change in Switzerland. Furthermore, drivers of ecosystem change display a spatial heterogeneity in their influence on ecosystem service trends. We propose an approach building on an additive model to disentangle the effect of climatological and non‐climatological drivers on ecosystem service trends. Such analyses should be extended in the future to ecosystem service flow and demand to complete ecosystem service assessments and to demonstrate and communicate more clearly the benefits of ecosystem services for human well‐being.

Countries
Switzerland, Netherlands
Keywords

land use change, trends, Conservation of Natural Resources, remote sensing, Soil, Humans, 910 Geography & travel, Ecosystem, Ecology, Institute for Computational Science, Biodiversity, regulating services, Carbon Dioxide, Institute of Mathematics, climate change, Institute of Geography, time series, Switzerland

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 10%
Green
bronze