Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecological Applications
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mowing accelerates phosphorus cycling without depleting soil phosphorus pool

Authors: Xiufeng Zhai; Peng Lu; Ruifang Zhang; Wenming Bai; Wen‐Hao Zhang; Ji Chen; Qiuying Tian;

Mowing accelerates phosphorus cycling without depleting soil phosphorus pool

Abstract

AbstractMowing, as a common grassland utilization strategy, affects nutrient status in soil by plant biomass removal. Phosphorus (P) cycle plays an important role in determining grassland productivity. However, few studies have addressed the impacts of mowing on P cycling in grassland ecosystems. Here, we investigated the effects of various mowing regimes on soil P fractions and P accumulation in plants and litters. We specifically explored the mechanisms by which mowing regulates ecosystem P cycling by linking aboveground community with soil properties. Our results showed that mowing increased soil dissolvable P concentrations, which probably met the demand for P absorption and utilization by plants, thus contributing to an increased P accumulation by plants. Mowing promoted grassland P cycling by a reciprocal relationship between plants and microbes. Short‐term mowing enhanced P cycling mainly through increased root exudation‐evoked the extracellular enzyme activity of microbes rather than the alternations in microbial biomass and community composition. Long‐term mowing increased P cycling mainly by promoting carbon allocation to roots, thereby leading to greater microbial metabolic activity. Although mowing‐stimulation of organic P mineralization lasted for 15 consecutive years, mowing did not result in soil P depletion. These results demonstrate that P removal by mowing will not necessarily lead to soil P limitation. Our findings would advance the knowledge on soil P dynamic under mowing and contribute to resource‐efficient grassland management.

Related Organizations
Keywords

microbial extracellular enzyme, Nitrogen, Phosphorus, soil phosphorus pool, Plants, Poaceae, microbial activity, root exudation, Grassland, Carbon, Soil, carbon allocation, grassland utilization, Nitrogen/metabolism, Biomass, phosphorus cycle, mowing, Gardens, Ecosystem, plant phosphorus acquisition

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research