Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2021
Data sources: Datacite
Ecology
Article . 2021
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Satellite‐derived NDVI underestimates the advancement of alpine vegetation growth over the past three decades

Authors: Huiying Liu; Bernhard Schmid; Hongfang Zhao; Tiangang Liang; Ni Huang; Zijian Shangguan; Jian Bi; +7 Authors

Satellite‐derived NDVI underestimates the advancement of alpine vegetation growth over the past three decades

Abstract

AbstractSatellite‐derived normalized difference vegetation index (NDVI) data are increasingly relied on to reveal the growth responses of vegetation to climate change, yet the vegetation growth tracking accuracy of these data remains unclear due to a lack of long‐term field data. Here, we adopted a unique field‐measured seasonal aboveground biomass dataset from 1982–2014 to assess the potential of using satellite‐derived NDVI data to match field data in regard to the interannual variability in seasonal vegetation growth in a Tibetan alpine grassland. We revealed that Global Inventory Monitoring and Modeling System (GIMMS) NDVI data captured the advancement of field‐measured vegetation growth throughout the entire study period but not from 2000–2014, while MODIS NDVI data still observed this advancing trend after 2000 to a limited extent. However, satellite‐derived NDVI data consistently underestimated the advancement degree of field‐measured vegetation growth, regardless of whether GIMMS or MODIS NDVI data were considered. We tentatively attribute this underestimation to an increased ratio of grass biomass to forb biomass, which could delay the advancement of NDVI development but not affect that of field‐measured biomass development. Our results suggest that satellite‐derived NDVI data may miss critical responses of vegetation growth to global climate change, potentially due to long‐term shifts in plant community composition.

Country
Switzerland
Related Organizations
Keywords

Ecology, UFSP13-8 Global Change and Biodiversity, Evolution, Climate Change, Plants, 10122 Institute of Geography, 1105 Ecology, Evolution, Behavior and Systematics, Behavior and Systematics, Biomass, 910 Geography & travel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
bronze