Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

All‐Solution‐Processed, Ambient Method for ITO‐Free, Roll‐Coated Tandem Polymer Solar Cells using Solution‐Processed Metal Films

Authors: Morten Vesterager Madsen; Thomas Rieks Andersen; Thue Trofod Larsen-Olsen; Eva Bundgaard; Jon Eggert Carlé; Henrik Friis Dam; Martin Helgesen; +7 Authors

All‐Solution‐Processed, Ambient Method for ITO‐Free, Roll‐Coated Tandem Polymer Solar Cells using Solution‐Processed Metal Films

Abstract

AbstractA solution‐processed silver film is employed in the processing of top‐illuminated indium‐tin‐oxide (ITO)‐free polymer solar cells in single‐ and double‐junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT:PSS/Ag grid forms the semitransparent top electrode. All layers are roll‐coated/printed on a flexible substrate by using only two techniques: slot–die coating for up to 11 consecutive layers and flexo‐printing for the last Ag grid layer. The slot–die coated Ag film is compared to an evaporated Ag film in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root‐mean‐square roughness of 3 nm was measured over 240×320 μm2 area), is highly conductive (<1 Ω/□), highly flexible, and cost‐effective in comparison to other reported metal films applied in polymer solar cells. Such properties result in high fill factors exceeding 50 % in both single and tandem structures on large‐area devices (1 cm2) and the corresponding efficiencies exceed 2 %.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research