
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
All‐Solution‐Processed, Ambient Method for ITO‐Free, Roll‐Coated Tandem Polymer Solar Cells using Solution‐Processed Metal Films

All‐Solution‐Processed, Ambient Method for ITO‐Free, Roll‐Coated Tandem Polymer Solar Cells using Solution‐Processed Metal Films
AbstractA solution‐processed silver film is employed in the processing of top‐illuminated indium‐tin‐oxide (ITO)‐free polymer solar cells in single‐ and double‐junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT:PSS/Ag grid forms the semitransparent top electrode. All layers are roll‐coated/printed on a flexible substrate by using only two techniques: slot–die coating for up to 11 consecutive layers and flexo‐printing for the last Ag grid layer. The slot–die coated Ag film is compared to an evaporated Ag film in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root‐mean‐square roughness of 3 nm was measured over 240×320 μm2 area), is highly conductive (<1 Ω/□), highly flexible, and cost‐effective in comparison to other reported metal films applied in polymer solar cells. Such properties result in high fill factors exceeding 50 % in both single and tandem structures on large‐area devices (1 cm2) and the corresponding efficiencies exceed 2 %.
2 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
