Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Technologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Technology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bradford Scholars
Article . 2015
Data sources: Bradford Scholars
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis of Bio‐Dimethyl Ether Based on Carbon Dioxide‐Enhanced Gasification of Biomass: Process Simulation Using Aspen Plus

Authors: Parvez, A.M.; Mujtaba, Iqbal M.; Hall, P.; Lester, E.H.; Wu, T.;

Synthesis of Bio‐Dimethyl Ether Based on Carbon Dioxide‐Enhanced Gasification of Biomass: Process Simulation Using Aspen Plus

Abstract

AbstractProcess simulation for a single‐step synthesis of dimethyl ether (DME) based on the CO2‐enhanced gasification of rice straw was conducted using Aspen Plus. The process consists of a gasification unit, a heat recovery unit, a gas purification unit, a single‐step DME synthesis unit, and a DME separation unit. In the simulation, highly pure DME was produced by the control of CO2 concentration in syngas to a very low level prior to synthesis. A gasification system efficiency of 36.7 % and CO2 emission of 1.31 kg kgDME−1 were achieved. This bio‐DME production based on the CO2‐enhanced gasification of biomass was cost‐effective as it required 19.6 % less biomass than that of DME production based on conventional biomass gasification. The performance and environmental benefits of the proposed process could be further improved by the utilization of unreacted gases and the managing of CO2 generated by the incorporation of a polygeneration concept or carbon storage.

Country
United Kingdom
Related Organizations
Keywords

330, Bio-DME, Aspen plus(TM), DME synthesis, Sustainability assessment, Bio-DME; CO2-enhanced gasification; Aspen plus(TM); DME synthesis; Sustainability assessment, CO2-enhanced gasification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
bronze