Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tailoring the Thermodynamics and Kinetics of Mg–Li Alloy for a MgH2‐Based Anode for Lithium‐Ion Batteries

Authors: Anamika Singh; Yoshitsugu Kojima; Sanjay Kumar; Sanjay Kumar; Gautam Kumar Dey;

Tailoring the Thermodynamics and Kinetics of Mg–Li Alloy for a MgH2‐Based Anode for Lithium‐Ion Batteries

Abstract

AbstractUnderstanding the lithiation–delithiation of the Mg–Li alloy during the absorption–desorption of hydrogen is essential for the development of Li‐ion batteries with MgH2 as a negative electrode. Tuning the hydrogenation–dehydrogenation kinetics and thermodynamics of the Mg–Li alloy could also be helpful to develop a lightweight material for on‐board hydrogen‐storage applications. Single‐phase Li3Mg7 (the highest % of lithium compound) was prepared by ball milling of LiH and MgH2 as precursors of Li and Mg followed by dehydrogenation at 400 °C under dynamic vacuum conditions. The cyclic hydrogenation–dehydrogenation behavior of the intermetallic was studied in detail. During hydrogenation, Li3Mg7 was delithiated to LiH and MgH2, whereas during dehydrogenation, LiH and MgH2 were lithiated to form the Li3Mg7 phase along with a Mg–Li solid solution. The hydrogenation–dehydrogenation kinetics of pristine Li3Mg7 were found to be slow. The hydrogenation–dehydrogenation kinetics were remarkably improved by doping with ZrCl4 as a catalyst. The activation energy and the thermodynamic parameters of the uncatalyzed and catalyzed alloy were evaluated, and the results were compared.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Related to Research communities
Energy Research