Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Technologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Technology
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Technology
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reactive and Nonreactive Ball Milling of Tin‐Antimony (Sn‐Sb) Composites and Their Use as Electrodes for Sodium‐Ion Batteries with Glyme Electrolyte

Authors: Wolfgang Brehm; Johannes Rolf Buchheim; Philipp Adelhelm;

Reactive and Nonreactive Ball Milling of Tin‐Antimony (Sn‐Sb) Composites and Their Use as Electrodes for Sodium‐Ion Batteries with Glyme Electrolyte

Abstract

Tin (Sn), antimony (Sb), as well as their intermetallic compound SnSb are potential high‐capacity negative electrodes for lithium‐ or sodium‐ion batteries. Starting from bulk Sn and Sb, the effect of ball milling in sodium‐ion half cells with a diglyme‐based electrolyte is studied. Nonreactive ball milling of Sn, Sb, and carbon leads to intimately mixed but largely phase‐separated composites (Sn + Sb) with electrochemical sodiation behavior being the sum of the individual phases. Thereby, Sb shows an unusual and rapid capacity fade in the chosen electrolyte which is unexpected, considering the usually excellent compatibility of diglyme‐based electrolytes with negative electrodes. Reactive ball milling of Sn and Sb using a planetary ball mill leads to the phase‐pure intermetallic compound β‐SnSb. Compared with Sn + Sb, SnSb shows excellent performance with a specific capacity exceeding 400 mAh g−1 after 190 cycles and a high rate capability (around 400 mAh g−1 at 5 C). Hence, herein, Sb is largely inactive as a pure phase but active when bound in the β‐SnSb intermetallic compound. Using in situ electrochemical dilatometry, the “breathing” of the electrodes during charging/discharging is minimized by optimizing ball‐milling time, which improves cycle life.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
hybrid