
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of the Current Density on the Interfacial Reactivity of Layered Oxide Cathodes for Sodium‐Ion Batteries

handle: 11581/461952
The full commercialization of sodium‐ion batteries (SIBs) is still hindered by their lower electrochemical performance and higher cost ($ W−1 h−1) with respect to lithium‐ion batteries. Understanding the electrode–electrolyte interphase formation in both electrodes (anode and cathode) is crucial to increase the cell performance and, ultimately, reduce the cost. Herein, a step forward regarding the study of the cathode–electrolyte interphase (CEI) by means of X‐ray photoelectron spectroscopy (XPS) has been carried out by correlating the formation of the CEI on the P2‐Na0.67Mn0.8Ti0.2O2 layered oxide cathode with the cycling rate. The results reveal that the applied current density affects the concentration of the formed interphase species, as well as the thickness of CEI, but not its chemistry, indicating that the electrode–electrolyte interfacial reactivity is mainly driven by thermodynamic factors.
Technology, current density, X-ray photoelectron spectroscopy, ddc:600, 600, 540, 620, electrode-electrolyte interface, info:eu-repo/classification/ddc/600, sodium-ion batteries, cathode electrolyte interphase
Technology, current density, X-ray photoelectron spectroscopy, ddc:600, 600, 540, 620, electrode-electrolyte interface, info:eu-repo/classification/ddc/600, sodium-ion batteries, cathode electrolyte interphase
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
