Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2014 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microbial diversity in tanning wastewaters treatment reactors

Authors: Joszef Bakonyi; Lassaad Belbahri; Steve Woodward; Tahar Mechichi; Najoua Mlaik; Andrea Borsodi;

Microbial diversity in tanning wastewaters treatment reactors

Abstract

Diversity of the microbial consortia involved in biodegradation of unhairing wastewater from tanneries was assessed. Both culture-dependent and culture-independent approaches were applied to identify bacteria in the activated sludge and endogenous biomass systems. Conventional culturing using dilution and planting techniques yielded eighteen pure bacterial isolates from endogenous biomass and activated sludge reactors. Isolates were identified using sequence analysis of PCR-amplified 16S rRNA sequences. Most of these bacteria belonged to the genus Bacillus. Culture-independent molecular studies of bacterial diversity in both reactors, however, revealed a wide diversity of microorganisms, including members of the Proteobacteria group. Therefore, the alpha Proteobacteria group in the endogenous biomass was characterized by the genus Pseudochrobactrum, which was absent from the activated sludge biomass. The 77 and 88 bacterial clone sequences recovered from the activated sludge reactor and the endogenous biomass reactor, respectively, were grouped into 23 Operational Taxonomic Units (OTUs). The Proteobacteria division represented the predominant phylogenetic group within the clone library, encompassing 52.17% and 60.75% of the total OTUs obtained from the activated sludge and endogenous biomass tanks, respectively. The diversity in both tanks was also determined. The rarefaction curves and Shannon index indicated that bacterial populations were equally diverse in both reactors. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 401–410, 2015

Powered by OpenAIRE graph
Found an issue? Give us feedback