
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adaptive neuro‐fuzzy inference system modeling of 2,4‐dichlorophenol adsorption on wood‐based activated carbon

doi: 10.1002/ep.13413
Adaptive neuro‐fuzzy inference system modeling of 2,4‐dichlorophenol adsorption on wood‐based activated carbon
AbstractPhenolic compounds cause significant problems both in drinking water and wastewater due to their toxicity, high oxygen requirements, and low biodegradability. They are listed as primary pollutants by the United States Environmental Protection Agency and the European Union. In this study, the adsorption efficiency of 2,4‐dichlorophenol (2,4‐DCP) on activated carbon, which is commonly used in treatment plants, was investigated under different experimental conditions including adsorbent dose, initial phenol concentration, initial pH, and contact time. As a result of experimental studies, it was determined that the adsorption isotherm and kinetics could be perfectly fitted to Langmuir and the assumption of pseudo‐second order model, respectively. Then, the adaptive neuro‐fuzzy inference system (ANFIS) model was developed, which was the primary purpose of this study. The correlation between training and testing data and the ANFIS output was over 0.999. The generalization ability of the model was found to be 0.999. The input variables such as adsorbent dosage (14.2%), initial concentration (14.6%), initial pH (13.9%), and the contact time (57.2%) showed a higher effect on 2,4‐DCP removal efficiency in the sensitivity analysis. To summarize, modeling studies that are frequently preferred in treatment plants for the removal of different pollutants will reduce the number of experiments harmful to human health and save time, labor, and economy.
- Aksaray University Turkey
- Aksaray University Turkey
Activated Carbon, Isotherm, Phenol, Adaptive Neuro-fuzzy Inference System, Adsorption, Kinetic Behavior
Activated Carbon, Isotherm, Phenol, Adaptive Neuro-fuzzy Inference System, Adsorption, Kinetic Behavior
1 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
