Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Science &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The application of nonthermal plasma in methanol synthesis via CO2 hydrogenation

Authors: Majid D. Farahani; Yimin Zeng; Ying Zheng;

The application of nonthermal plasma in methanol synthesis via CO2 hydrogenation

Abstract

AbstractCH3OH is an energy carrier that can be generated from renewable resources and be used as a fuel in fuel cells and internal combustion engines and a platform chemical for the synthesis of value‐added chemicals or gasoline. Carbon dioxide (CO2) hydrogenation is one of the widely researched methods to generate methanol. The traditional CO2 hydrogenation reaction method (requires high H2 pressure and temperatures) has attracted considerable attention. However, the new emerging field of catalysis referred to as nonthermal plasma (NTP) catalysis has also been developed extensively for methane reforming and CO2 hydrogenation to methane and CO. The plasma‐assisted approach not only presents remarkable advantages, such as room temperature and atmospheric H2 pressure but also has great potential to be powered by renewable electricity in a flexible way since it can be easily switched on/off. In this account, we review the recent articles published on methanol synthesis from CO2 and H2 using NTP. We reviewed and discussed the mechanism of this reaction under NTP, the modification of the reactor configurations, and the rationale behind the catalyst design. In the end, we discussed the advantages and disadvantages of each of these works and the future perspectives of this interesting privileged reaction. We believe this review is of interest to researchers active in sustainable heterogeneous catalysis.

Related Organizations
Keywords

Technology, T, Science, Q, environmental impact, other renewables, environment, energy efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
gold