Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Science &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational fluid dynamic simulation modeling of carbon capture using polyethylenimine impregnated protonated titanate nanotubes

Authors: Hyoung‐Chul Kim; Hongbo Du; Raghava R. Kommalapati; Ziaul Huque; Xinhua Shen;

Computational fluid dynamic simulation modeling of carbon capture using polyethylenimine impregnated protonated titanate nanotubes

Abstract

AbstractA comprehensive computational fluid dynamic (CFD) model of CEES‐developed polyethylenimine impregnated protonated titanate nanotubes (PEI‐PTNTs) was developed using the Multiphase Flow with Interphase eXchanges (MFiX) package to evaluate the performance of the PEI‐PTNTs in a 1‐MW pilot‐scale carbon capture reactor developed by the National Energy Technology Laboratory (NETL). In this CFD model, the momentum, continuity, and energy transport equations were integrated with the first‐order chemistry model for chemical kinetics of heterogeneous reactions to predict the adsorption of CO2 onto amine‐based sorbent particles and the reactor temperature. Based on the amount of the CO2 adsorption obtained in the small‐scale experiment, the coefficients for the chemical reaction equations of PEI‐PTNTs are adjusted. The adjusted PEI‐PTNTs model is applied to the simplified numerical model of 1‐MW pilot‐scale carbon capture system, which is calibrated through the comparison between our simulation results and the results provided by NETL. This calibrated CFD model is used for selecting the optimized flow rate of the gas phase. Our study shows that the optimized gas flow rate to absorb 100% CO2 without loss is 1.5 kg/s, but if higher absorption rate is preferable despite some loss of CO2 absorption in the reactor, a higher flow rate than 1.5 kg/s can be selected.

Keywords

solid amine‐based carbon capture, Technology, T, Science, Q, MFiX, chemical reactions, titanate nanotubes, computational fluid dynamic simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold