Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Toxico...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2018
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Other literature type . 2018
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Toxicology and Chemistry
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The combined and interactive effects of zinc, temperature, and phosphorus on the structure and functioning of a freshwater community

Authors: Van de Perre, Dimitri; Roessink, Ivo; Janssen, Colin R.; Smolders, Erik; De Laender, Frederik; van den Brink, Paul J.; De Schamphelaere, Karel A.C.;

The combined and interactive effects of zinc, temperature, and phosphorus on the structure and functioning of a freshwater community

Abstract

Abstract   Ecotoxicological studies mainly consist of single-species experiments evaluating the effects of a single stressor. However, under natural conditions aquatic communities are exposed to a mixture of stressors. The present study aimed to identify how the toxicity of zinc (Zn) is affected by increased temperature and increased phosphorus (P) supply and how these interactions vary among species, functional groups, and community structure and function. Aquatic microcosms were subjected to 3 Zn concentrations (background, no Zn added, and 75 and 300 μg Zn/L), 2 temperatures (16–19 and 21–24 °C), and 2 different P additions (low, 0.02, and high, 0.4 mg P L−1 wk−1) for 5 wk using a full factorial design. During the study, consistent interactions between Zn and temperature were only rarely found at the species level (4%), but were frequently found at the functional group level (36%), for community structure (100%) and for community function (100%; such as dissolved organic carbon concentrations and total chlorophyll). The majority of the Zn × temperature interactions were observed at 300 μg Zn/L and generally indicated a smaller effect of Zn at higher temperature. Furthermore, no clear indication was found that high P addition by itself significantly affected the overall effects of Zn on the community at any level of organization. Interestingly, though, 90% of all the Zn × temperature interactions observed at the species, group, and community composition level were found under high P addition. Collectively, the results of our study with the model chemical Zn suggest that temperature and phosphorus loading to freshwater systems should be accounted for in risk assessment, because these factors may modify the effects of chemicals on the structure and functioning of aquatic communities, especially at higher levels of biological organization. Environ Toxicol Chem 2018;37:2413–2427. © 2018 SETAC

Countries
Netherlands, Belgium
Keywords

Aquatic Organisms, Zinc/analysis, Fresh Water, Chemical/analysis, Aquatic Organisms/drug effects, Ecotoxicology, Risk Assessment, Freshwater toxicology, Phosphorus/analysis, Climate change, Water Pollutants, Fresh Water/chemistry, Community-level effects, Temperature, Phosphorus, Plankton, Zinc, Metal toxicity, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
bronze