Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Te...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Greenhouse Gases Science and Technology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potential evaluation of CO2 EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea

Authors: Pengchun Li; Xueyan Liu; Jiemin Lu; Di Zhou; Susan D. Hovorka; Gang Hu; Xi Liang;

Potential evaluation of CO2 EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea

Abstract

AbstractThe Pearl River Mouth Basin (PRMB) is the largest petroliferous sedimentary basin in the northern South China Sea. It is near the coastal economic zone of Guangdong province where a large number of CO2 emission sources are located. Carbon dioxide enhanced oil recovery (EOR) represents an opportunity to promote offshore carbon capture, utilization and storage (CCUS) deployment because CO2 flooding offers a method to recover additional oil while simultaneously sequestering anthropogenic CO2. In this paper, a comprehensive multiparameter ‘quick look’ and potential evaluation method was proposed to screen and assess offshore CO2 EOR potential. A screening scheme for the CO2 EOR potential of reservoirs of the PRMB was also proposed using additional parameters, including reservoir properties and engineering design incorporating a dimensionless screen model and calculations. The results show that the suitability of reservoirs for CO2 EOR and storage varies and could be categorized into four priority grades. Approximately 30 of the oil reservoirs from 10 oilfields were preferentially identified by applying the screening method for reservoirs with predicted higher ultimate recovery potentials. It was predicted that 3227 × 104 t of additional oil could be produced from these reservoirs and that 3617 × 104 t of CO2 could be simultaneously stored. The sensitivity analysis shows that injection pressure (Pinj) would be more sensitive than production pressure (Pp) and well distance (L) on the CO2 EOR and storage efficiency, indicating that EOR operations with higher Pinj may improve oil production. The prospective reservoirs include those candidates with suitability grades of I and II from the Lufeng (LF) and Huizhou (HZ) oilfield clusters, where 1164 × 104 t of additional oil could be produced and 1464 × 104 t of CO2 stored with CO2 EOR. © 2018 Society of Chemical Industry and John Wiley & Sons, Ltd.

Countries
United States, United Kingdom
Keywords

CO2-EOR, offshore, Guangdong, CCS, CO2 storage, offshore storage, enhanced oil recovery, EOR

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Green
bronze