Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Integrated Environmental Assessment and Management
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework

Authors: Zucaro, A.; Forte, A.; Fagnano, M.; Bastianoni, S.; Basosi, R.; Fierro, A.;

Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework

Abstract

Abstract Annual fiber sorghum (FS) and perennial giant reed (GR) cultivated in the Mediterranean area are interesting due to their high productivity under drought conditions and their potential use as lignocellulosic feedstock for biorefinery purposes. This study compares environmental constraints related to FS and GR produced on experimental farms (in the Campania region) using an attributional life cycle assessment (LCA) approach through appropriate modeling of the perennial cultivation. For both crops, primary data were available for agricultural management. Direct field emissions (DFEs) were computed, including the potential soil carbon storage (SCS). Giant reed showed the lowest burdens for all impact categories analyzed (most were in the range of 40%–80% of FS values). More apparent were the differences for climate change and freshwater eutrophication (respectively 80% and 81% lower for GR compared to FS). These results are due to the short-term SCS, experimentally detected in the perennial GR crop (about 0.25 ton C ha−1yr−1, with a global warming offsetting potential of about 0.03 ton CO2/tonGR dry biomass). The results are also due to the annual application of triple superphosphate at the sowing fertilization phase for FS, which occurs differently than it does for GR. Phosphorous fertilization was performed only when crops were being established and therefore properly spread along the overall crop lifetime. For both crops, after normalization, terrestrial acidification and particulate matter formation were relevant impact categories, as a consequence of the NH3 DFE by volatilization after urea were spread superficially. Therefore, the results suggest higher environmental benefits of the perennial crop than the annual crop. Integr Environ Assess Manag 2015;11:397–403. © 2015 SETAC Key Points An LCA comparison between Mediterranean annual and perennial feedstocks was conducted to explore their potential use for biorefinery purposes. Environmental constraints of crops fiber sorghum (annual) and giant reed (perennial), which exhibit high productivity under drought conditions, were investigated. Total burdens were largely affected by direct field emissions following fertilizer application. The perennial crop entailed a better environmental performance with reduced input and emissions.

Countries
Italy, Germany
Keywords

Crops, Agricultural, Conservation of Natural Resources, 571, Energy crop, Direct field emissions, Climate Change, Annual crop, Agriculture, Life cycle assessment; Energy crops; Perennial crops; Annual crops; Direct field emissions, Global Warming, Life cycle assessment, Perennial crop, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%