Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Climatology
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Climatology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2024 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Indices for daily temperature and precipitation in Madagascar, based on quality‐controlled and homogenized data, 1950–2018

Authors: Luc Yannick Andréas Randriamarolaza; Enric Aguilar; Oleg Skrynyk; Sergio M. Vicente‐Serrano; Fernando Domínguez‐Castro;

Indices for daily temperature and precipitation in Madagascar, based on quality‐controlled and homogenized data, 1950–2018

Abstract

AbstractThis study updates knowledge on climate evolution in Madagascar from 1950 to 2018. Changes were analyzed using annual and seasonal climate indices at regional and station level. The original daily series of minimum and maximum temperature and precipitation obtained from 28 meteorological stations were quality controlled and homogenized. Thirty‐seven (37) climate indices were obtained from the daily series. The results show that changes in temperature had a higher degree of spatial coherence than changes in precipitation. Trends for temperature indices were mostly significant at 0.05 level and compatible with warming. Changes in minimum temperatures were greater than those for the maximum, leading to a significant decrease in the diurnal temperature range (DTR). Warm nights increased more than warm days, (0.70 days⋅decade–1) and cold nights decreased more than cold days, (0.21 days⋅decade–1). In addition, we found more stations with significant trends for very cold nights (92.60%) than for very warm days (51.80%) but they progressed differently (decrease and increase, respectively). Station‐by‐station precipitation index trends were mostly non‐significant at 0.05 level, and most regional precipitation index showed decreasing trends. A shift in precipitation magnitude was observed around 2000–2018, a period of intensified drying (where 70.40% of stations recorded non‐significant decreasing trends). An analysis of drought characteristics (i.e., intensity, magnitude and duration) highlighted the situation, especially in the south‐east at an annual timescale.

Country
Spain
Keywords

HOMER, Climate trends, Quality control, ClimInd, INQC, Climate change, Daily homogenization, Climate indices, Climatol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 75
    download downloads 97
  • 75
    views
    97
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC7597
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
22
Top 10%
Average
Top 10%
75
97
Green
hybrid