Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Polymers for Advanced Technologies
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy harvesting using hybridization of dielectric nanocomposites and electrets

Authors: Abdelkader Rjafallah; M’hammed Mazroui; Fouad Belhora; Fouad Belhora; Daniel Guyomar; Fatima Zahra El Fatnani; Abdelowahed Hajjaji;

Energy harvesting using hybridization of dielectric nanocomposites and electrets

Abstract

Electrostrictive polymers have been investigated as electroactive materials for electromechanical energy harvesting. This kind of material is isotope, i.e. there is no permanent polarization compared with piezoelectric material, so in order to ensure its polarization and scavenging energy, the electrostrictive polymers need necessarily an application of a static field. To avoid this problem, we used the hybridization of electrostrictive polymer with electret. The present work aims an analytical modeling for predicting the power convert when the material was mechanically excited. The study was carried out on polyurethane and terpolymer [P(VDF–TrFE–CFE)] films, either without filler or filled with carbon nanopowder. Experimental measurements of the harvested power showed a good agreement with the theoretical behavior predicted by the proposed model. It was also shown that the incorporation of nanofillers increased the power harvested from 5.22 · 10−2 to 1.498 · 10−1 μW cm−3 and from 6.87 · 10−1 to 1.76 μW cm−3 in polyurethane and in the terpolymer, respectively. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords

Energy harvesting, Polymers, Scavenging energy, Polyurethanes, Electrostrictive polymers, Conducting polymers, Measurements of, Nanostructured materials, Fillers, Carbon, [SPI]Engineering Sciences [physics], Isotopes, Electroactive material, Carbon nanopowders, Polarization, Static fields, Electrets, Carbon films, Electro-active polymers, Electromechanical energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research